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Abstract

Sparse matrix dense matrix multiplication (SpMM) is com-
monly used in applications ranging from scienti�c comput-
ing to graph neural networks. Typically, when SpMM is exe-
cuted in a distributed platform, communication costs domi-
nate. Such costs depend on how communication is scheduled.
If it is scheduled in a sparsity-unaware manner, such as with
collectives, execution is often ine�cient due to unneces-
sary data transfers. On the other hand, if communication
is scheduled in a �ne-grained sparsity-aware manner, com-
municating only the necessary data, execution can also be
ine�cient due to high software overhead.

We observe that individual sparse matrices often contain
regions that are denser and regions that are sparser. Based on
this observation, we develop a model that partitions commu-
nication into sparsity-unaware and sparsity-aware compo-
nents. Leveraging the partition, we develop a new algorithm
that performs collective communication for the denser re-
gions, and �ne-grained, one-sided communication for the
sparser regions. We call the algorithm Two-Face. We show
that Two-Face attains an average speedup of 2.11x over prior
work when evaluated on a 4096-core supercomputer. Addi-
tionally, Two-Face scales well with the machine size.
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1 Introduction

Sparse matrix dense matrix multiplication (SpMM) is a key
kernel in sparse linear algebra. It has applications across a
wide range of domains. For example, SpMM is a key opera-
tion in Latent Dirichlet Allocation, Non-negative Matrix Fac-
torization, and Alternating Least Squares [11]. It is the bottle-
neck primitive in various Graph Neural Networks [17, 29, 30]
and an integral part of popular graph learning frameworks
such as PyTorch Geometric (PyG) [18] and Deep Graph Li-
brary (DGL) [55].

The ever-increasing computing and memory demands of
sparse matrix computations introduce the need for e�cient
distributed SpMM. However, designing e�cient distributed
SpMM algorithms is challenging [7, 8, 48]. Due to the low
arithmetic intensity of this kernel, the communication cost,
rather than the computation cost, typically dominates the
execution time. Such cost depends on how communication
is scheduled [8].
Communication can be scheduled in a sparsity-unaware

manner, such as with collective communications. For exam-
ple, assume that each node originally hosts a block of the
dense input matrix. This block may be sent to all the other
nodes by using collectives or RDMA accesses to fully repli-
cate it [48] or by using shifting algorithms [8] similar to
those that would be used for dense computation. With this
strategy, execution is often ine�cient due to redundant data
transfers, since parts of the dense input matrix may not be
needed by some nodes.

https://doi.org/10.1145/3620665.3640427
https://doi.org/10.1145/3620665.3640427
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On the other hand, communication can be scheduled in
a �ne-grained sparsity-aware manner [3], communicating
only the truly necessary data and computing asynchronously.
Speci�cally, when a node processes a sparse element but does
not own the necessary dense row for that computation, it
gets that row with a �ne-grained one-sided request. With
this strategy, execution can also be ine�cient due to high
software overheads and the need for more network round-
trips [8].
In this work, we observe that individual sparse matrices

often contain regions that are relatively denser and regions
that are relatively sparser. Based on this observation, we
develop a model that partitions computation and communi-
cation into sparsity-unaware and sparsity-aware portions.
Relatively denser regions of the sparse matrix are broken
down into Synchronous Stripes and transfer the correspond-
ing parts of the dense input matrix with Sparsity-Unaware

Transfers (SUT). Relatively sparser regions are broken down
into Asynchronous Stripes and transfer the corresponding
parts of the dense input matrix with Sparsity-Aware Trans-

fers (SAT).
Leveraging the partition, we develop a new algorithm

that performs collective communication for the synchronous
stripes, and �ne-grained, one-sided communication and asyn-
chronous computation for the asynchronous stripes. We call
the algorithm Two-Face. The synchronous and asynchronous
parts of the sparse matrix are processed in parallel, and the
model aims at equalizing the runtimes of the two parts.
We evaluate Two-Face on a CPU-based supercomputer

using large matrices and compare it to state-of-the-art base-
lines. For a system with 32 nodes, 128 cores per node, and
dense matrices with 128 columns, Two-Face attains an av-
erage speedup of 2.11x against dense shifting [8], a high-
performing baseline. In addition, Two-Face is a scalable al-
gorithm: its average speedup over dense-shifting increases
to 2.21x for 64 nodes. Finally, the overhead introduced by
the necessary matrix preprocessing step is small enough to
make Two-Face suitable for applications that use the same
sparse matrix only a few dozen times.
Overall, this paper’s contributions are:

• The Two-Face algorithm for distributed SpMM, which is
based on a mix of collective and one-sided communication.

• A low-overhead model and method to partition sparse
matrices into regions corresponding to the two access types.

• An evaluation of Two-Face on a supercomputer and a com-
parison with the state-of-the-art.

2 Background

In this section, we provide a background on the memory
access patterns in SpMM, the 1D partitioning method for dis-
tributing the SpMM data structures in a multi-node system,
and the di�erences in the communication patterns of SUT
and SAT.

2.1 SpMM

In SpMM, a sparse matrix � and a dense matrix � are mul-
tiplied, and the result is a dense matrix � , as expressed by
� = � × �. We refer to the number of columns in the dense
matrices as K. Figure 1a illustrates the memory accesses and
computation of this kernel. Note that � is shown transposed
in the whole paper to help visualization. For each nonzero
of the input sparse matrix �, one row of � and one row of
� are accessed. Those rows are indexed by the nonzero’s
coordinates: the row index of the nonzero (A_83) indexes � ,
while the column index of the nonzero (2_83) indexes �. For
example, in the �gure, nonzero 0 triggers read accesses from
the dense input row of � in black, and read andwrite accesses
to the dense output row of� in black. The � row is scaled by
0 and added to the� row. This process is repeated for all the
nonzeros of the sparse matrix. When the dense matrices are
distributed in a multi-node machine, the nonzero structure
of � a�ects the inter-node data transfer patterns.
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Figure 1. SpMM and 1D partitioning.

2.2 1D Partitioning

When executing SpMM on a distributed system, the sparse
and densematrices should be partitioned across nodes. In this
work, we use 1D partitioning, which in prior work [8] was
shown to display good performance for many sparse input
matrices. Figure 1b illustrates 1D partitioning for a system
consisting of 4 nodes (# 0...# 3). The matrices are partitioned
according to the node colors. Each node is responsible for
the nonzeros in a set of consecutive rows of�. It additionally
hosts a set of consecutive � and� rows as shown in Figure 1b.
The read and write accesses to the dense output matrix� are
always local. The accesses to the dense input matrix � are
often remote, except for nonzeros with 2_83s that index to
the local portion of � (e.g., nonzeros with 2_83 equal to 0 or
1 in Node 1). Overall, with this partitioning scheme, remote
data accesses occur only for �. From now on, we will use the
term remote transfers to mean transferring remote elements
of the � matrix.

2.3 Sparsity-unaware and Sparsity-aware Transfers

We now discuss the communication patterns associated with
sparsity-unaware (SUT ) and sparsity-aware transfers (SAT ).
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Figure 2. Speedup of Async Fine over a full-replication AllGather collective implementation for = 32 (left) and = 128 (right).
There is no data for kmer with  = 128 due to the large memory consumption of the full-replication collective algorithm.

Figure 3a illustrates one possible SUT pattern. Each node
sends its local rows of � to all of the other nodes. This is a
conservative approach: all local rows are transferred to all
the other nodes regardless of whether the rows are actually
useful to all the destination nodes. This pattern can be imple-
mented either with collectives [48] such as AllGather [12, 51],
which fully replicates the dense input, or with shifting algo-
rithms [8] that perform the transfers iteratively in a cyclic
manner. A shifting algorithm consists of a series of compu-
tation and communication steps.
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Figure 3. Examples of SUT and SAT patterns.

Figure 3b illustrates an example of the SAT approach. Each
node traverses its local partition of the sparse matrix � and
issues �ne-grained read requests for rows of �. For example,
Node N0 is responsible for the nonzero 0, but the correspond-
ing � row that this nonzero requires is hosted in N3. Hence,
as shown in the �gure, N0 issues a request to N3 for the row
(dashed arrow) and N3 sends the row (solid arrow). Similar
requests are issued for nonzeros 2 and 3 , but not for 1 and 4 ,
since the required � rows of the latter are already local.
The SATs are �ne-grained – only a single row is trans-

ferred instead of all the rows of a node as in the SUT approach.
In addition, requests are typically initiated by the receiver
and are asynchronous (i.e., the set of all nodes does not need

to synchronize for the request to be completed). For these
reasons, we refer to this particular communication pattern
for distributed SpMM as Async Fine. This is in contrast to
the execution strategies that use SUTs, where transfers are
coarse-grained and require more synchronization.

3 Motivation

We now show that, for some matrices, the SAT pattern is
more suitable, while for others the SUT is better. Then, we
provide an example to motivate that a combination of the
two approaches for the same matrix can yield the best results.

3.1 Choice of SAT & SUT SpMM is Input Dependent

Both the SUT and SAT approaches have pitfalls: SUTs can
lead to unnecessary data transfers, while SATs can have high
software overhead and more round-trips between nodes. To
compare their performance, we pro�le the execution of dis-
tributed SpMM using Async Fine (a SAT approach) and All-
Gather collectives (a SUT approach). We use a distributed
machine with 32 nodes and 128 CPU cores per node, run-
ning the two algorithms for 8 large sparse matrices from
SuiteSparse [15], and for two di�erent values of K (32 and
128). Section 6 gives more details about our methodology.
Figure 2 displays our �ndings. The �gure shows the speedup
of Async Fine over the AllGather implementation (Collec-
tives) for  = 32 (left) and  = 128 (right). We do not include
results for the kmer matrix with  = 128 because the single-
node memory demand of Collectives exceeds the single-node
capacity in our system.
We see that, for half of the matrices, Async Fine outper-

forms Collectives, while the opposite is the case for the other
half. The speedup ofAsync Fine over Collectives reaches 11.5x,
while the speedup of Collectives over Async Fine reaches
10.5x. Clearly, whether SUT or SAT works best depends on
the sparsity pattern of the input matrix.

3.2 Combining SUT & SAT for a Single SpMM

Typically, the nonzeros in a sparse matrix are not evenly
distributed. Consequently, combining the SAT and SUT com-
munication �avors for a single SpMM could be bene�cial. An
example of this idea is shown in Figure 4. We split the nonze-
ros into three categories: (1) local-input nonzeros (NNZs) are
those for which the dense input rows needed are already
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local to the node with the nonzeros and, therefore, no re-
mote transfers are needed; (2) sync nonzeros are those for
which the dense input rows needed are better o� transferred
through SUTs; and (3) async nonzeros are those for which it
is more bene�cial to transfer the rows through SAT.
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Figure 4. Example of how combining the two communica-
tion �avors can be bene�cial.

To understand which nonzeros are sync and which are
async, consider the example. Columns 4 and 5 of the sparse
matrix are quite dense. This means that the corresponding
dense input rows of � (shaded in the �gure) are useful to
many nodes. Speci�cally, �[4,0: -1] is needed by N1, N2, and
N3, while �[5,0: -1] is needed by all the nodes. Hence, it is
likely bene�cial to transfer the whole group of rows hosted
by N2 to all the other nodes through a collective broadcast
operation. Hence, we classify the nonzeros at (0,5), (2,4), (3,5),
(6,4), and (6,5) as sync. On the other hand, �[0,0: -1] is not
needed by any of the remote nodes and �[1,0: -1] is only
needed by the N2 remote node—N0 also accesses both rows,
but they are already local and no transfers are needed. Trans-
ferring the whole group of dense rows that N0 hosts through
a collective broadcast would lead to many unnecessary data
transfers. Thus, the best strategy is likely for N2 to issue a
one-sided request to N0 to get �[1,0: -1], without synchro-
nizing with the rest of the nodes. Therefore, the nonzero at
(5,1) is classi�ed as async. A similar situation occurs with
the nonzero at (1,6), which is an async nonzero. Note that a
collective broadcast operation does not necessarily need to
include all nodes as destinations. For example, if the nonzero
at (0, 5) was absent, then N2 could still issue a multicast
transfer directed only to N1 and N3.

4 Overview of Two-Face

In this section, we translate the intuition about combining the
SUT and SAT approaches into an algorithm called Two-Face.

Two-Face combines sparsity-unaware and sparsity-aware
transfers for e�cient distributed SpMM. In this section, we
describe how sparse matrices are analyzed and partitioned
into two types of regions.

4.1 Sparse Matrix Partitioning

Before the SpMM execution begins, the sparse matrix is pre-
processed in order to determine which of the data transfers
will use coarse-grained multicast operations, and which will
use �ne-grained one-sided communication. Then, during
runtime, both types of transfers and their corresponding
computations will proceed in parallel.
Two-Face adopts 1D partitioning (Subsection 2.2). Thus,

each node, which contains one MPI rank, is responsible for
the nonzeros in a group of consecutive rows of sparse matrix
�. In addition, the node hosts the corresponding group of
consecutive rows of the dense output matrix � , and a group
of consecutive rows of the dense input matrix �. As discussed
earlier, the accesses to � and � are always local, while the
accesses to � can either be local or require a remote data
transfer, depending on the 2_83s of the processed nonzeros.
The matrices are partitioned in the following way:

Megatile. As shown in Figure 5, we logically divide the
matrix � into megatiles (MT). Given the matrix � with #
rows and" columns, and given ? nodes in the distributed
system, a megatile is formed with # /? consecutive rows
and"/? consecutive columns. Node 8 stores the 8Cℎ row of
megatiles. We logically divide the matrices � and � based
on the width and height of a megatile, respectively. Figure 5
shows the breakdown of the matrices for ? = 4. The chunks
of the � and � matrices are distributed across the nodes as
shown in the �gure, where node 8 is labeled N8 .

W

N/p

dense stripe

B

CM/p

N0 N1

N2

N3

N0

N1

N2

N3sparse stripe

A

Megatile

Figure 5. Two-Face megatiles and sparse and dense stripes.

Sparse stripe. Each megatile is further divided into sparse

stripes, which determine the communication patterns. A
sparse stripe has the same number of rows as a megatile
and a �xed number of columns , . We choose to divide
megatiles into sparse stripes to allow for partitioning the
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sparse matrix into two types of regions at a �ne granularity.
Sparse stripes are classi�ed as local-input if their correspond-
ing � rows are owned by the local node; otherwise, they are
remote-input. A remote-input sparse stripe can either trigger
a coarse-grained collective transfer or a �ne-grained asyn-
chronous one. At a high level, remote-input stripes requiring
many rows of the dense input matrix � will be marked as
synchronous as, during execution, they will bene�t from the
coarse-grained collectives. On the contrary, remote-input
stripes requiring few rows of � will be marked as asynchro-
nous as, during execution, they will bene�t from �ne-grained
asynchronous transfers. During execution, multiple nodes
containing synchronous stripes that require the same data
from � will participate in the same collective multicast op-
eration to receive that data. It is possible that a “multicast”
transfers data to only a single destination node.

Dense stripe.All the sparse stripes that have the same range
of 2_83s in � access the same group of rows in matrix �. We
call this group of dense rows a dense stripe. A synchronous
sparse stripe will trigger the coarse-grained transfer of a
dense stripe using a collective operation with, potentially,
additional destination nodes; an asynchronous sparse stripe
will trigger the �ne-grained one-sided transfer of individual
rows (or groups of adjacent rows) within the dense stripe.
These asynchronous transfers will only transfer the rows of
the dense stripe that are needed for the computation. If a
node does not need any of a dense stripe’s rows, that dense
stripe will not be communicated to it at all.

In the next sections, we use stripe to refer to sparse stripes.
Any mention of dense stripes is explicit.

Stripes are classi�ed as asynchronous or synchronous dur-
ing a preprocessing step using a model that tries to minimize
the expected execution time. We present the model in Sec-
tion 4.2. During the actual execution after the preprocessing
step, the local threads in an MPI rank operate in parallel and
are split into two groups: (1) synchronous threads, which han-
dle the data transfers for the synchronous stripes as well as
the computation for synchronous and local-input stripes, and
(2) asynchronous threads, which handle the data transfers
and computation for the asynchronous stripes. All synchro-
nous communication is completed before any synchronous
computation begins. On the other hand, asynchronous com-
munication and computation overlap: a thread may compute
on one asynchronous stripe while another thread transfers
data for a second asynchronous stripe.
To optimize computation and communication e�ciency,

the nonzeros in sparse stripes are ordered in row-major order
in synchronous stripes and column-major order in asynchro-
nous stripes. In synchronous stripes, the nonzeros are stored
in row-major order because this bene�ts computation. Specif-
ically, a thread can process the nonzeros of a whole row of

the stripe and bu�er the results in a thread-local bu�er be-
fore updating � . Then, the thread uses a single synchroniza-
tion operation to accumulate the contents of the thread-local
bu�er into the corresponding� row. In asynchronous stripes,
the nonzeros are stored in column-major order to bene�t
communication. Speci�cally, a column-major format allows
a thread to quickly traverse the nonzeros and determine the
unique 2_83s of the nonzeros in a stripe, which in turn iden-
tify the rows of matrix � that need to be transferred. This
comes at the cost of computational ine�ciency since this
format makes bu�ering the output of a thread’s computa-
tions hard. As a result, the thread must typically use one
synchronization operation for each nonzero to accumulate
results onto � .

4.2 Preprocessing Model

During execution, Two-Face will process the asynchronous
stripes in parallel with the synchronous and local-input
stripes. Consequently, the optimal choice to partition the
sparse matrix into synchronous and asynchronous stripes
is one that equalizes the execution times of asynchronous
stripes and synchronous/local-input stripes. To this end, we
create a model of execution based on the following ideas.
For the synchronous stripes, the model assumes that the

computation time will be negligible compared to the syn-
chronous communication time. The reason is that the row-
major format of the nonzeros lends itself to e�cient exe-
cution: the output of the nonzeros in a row of the stripe is
reused through a thread-local bu�er and accumulated into
the corresponding� row with a single synchronization oper-
ation. In addition, we take advantage of this parallelizability
by assigning more parallel threads to the computation of
synchronous/local-input stripes than for the asynchronous
stripes. For the local-input stripes, since they do not need
communication, the model neglects both communication
and computation time.

In contrast, the computation time for asynchronous stripes
may be signi�cant because the column-major format of the
nonzeros lends itself to ine�cient execution: thread-local
bu�ers are not used and we need to perform a synchroniza-
tion operation for every nonzero. In addition, because syn-
chronization may be a bottleneck, we assign fewer threads to
the computation of asynchronous stripes than to the others.
Therefore, for the asynchronous stripes, the model considers
both computation and communication.

Wemodel the cost of synchronous communication (�><<( ),
asynchronous communication (�><<�), and asynchronous
computation (�><?�) for a particular node as:

�><<( = (( (V( , + U( )

�><<� = V� !� + U�(�

�><?� = W� #� + ^�(�
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Consider �><<( �rst. (( is the number of synchronous
stripes processed by the node,, is the stripe width, and  is
the number of columns in the dense matrices. V( is the cost
of synchronous transfer per element of � (i.e., it is inversely
proportional to the bandwidth), and U( is other per-stripe
overheads of synchronous transfers.

Next, for�><<�, (� is the number of asynchronous stripes
processed by the node, and !� is the total number of rows
of the dense matrix � transferred for these stripes via �ne-
grained accesses. V� and U� represent the same costs as V(
and U( but for asynchronous accesses.

Finally, for �><?�, #� is the total number of nonzeros in
the asynchronous stripes processed by the node. W� is the
computational cost per operation, and ^� is the additional
per-stripe software overhead of asynchronous computation.

The coe�cients V( , U( , V�, U�, W�, and ^� are determined
via a linear regression [40] calibration step (details in Sec-
tion 6.2). These parameters are dependent on the system
con�guration. For example, a system with a large bisection
bandwidth should have small V terms. The U terms may be
reduced by reducing the round-trip communication latency,
including the latency incurred in software libraries/drivers
and in the network.
In the optimal case, �><<( = �><<� +�><?�, so that

there is a perfect overlap of the asynchronous and synchro-
nous components. De�ning () = (( + (� to be the total
number of non-local-input stripes processed by a particular
node and rearranging this equation gives the following:

(( (V( , + U( ) = V� !� + U�(� + W� #� + ^�(�

=⇒ (() − (�) (V( , + U( ) =  (V�!� + W�#�)

+ (� (U� + ^�)

=⇒ () (V( , + U( ) =  (V�!� + W�#�)

+ (� (U� + ^� + V( , + U( ) (1)

We now classify the stripes requiring communication as
either synchronous or asynchronous. Initially, we assume
that all stripes are synchronous, which makes the right-hand
side of Equation 1 equal to 0. Then, we take each stripe 8 and
consider classifying it as asynchronous, instead. In this case,
the stripe’s contribution (call it I8 ) to the right-hand side of
Equation 1 would be given by:

I8 = E8 + D,

where E8 =  (V�;8 + W�=8 ),

D = U� + ^� + V( , + U( ,

where stripe 8 requires ;8 dense rows from matrix � and
contains =8 nonzeros. Note that D depends only on the stripe
width (, ) and other constants, and is therefore constant for
all the stripes in the matrix.

To identify the most bene�cial stripes to classify as asyn-
chronous, we look for stripes with low values of I8 . This is
because a low I8 implies that, if the stripe is classi�ed as
asynchronous, it requires few dense rows to be transferred

from a remote node and contains few nonzeros. Therefore,
its communication and computation costs are relatively low.
On the other hand, if the stripe is classi�ed as synchronous,
it has a constant communication cost.
Consequently, we sort all of this node’s stripes by their

I8 in ascending order. Then, we take one stripe at a time, in
order, and classify it as asynchronous, until we have taken
the �rst A stripes, where A is the greatest number that satis�es

() (V( , + U( ) ≥

A−1∑

8=0

I8 .

The rest of the stripes are classi�ed as synchronous. With
this method, the two sides of Equation 1 are approximately
equal, which is a necessary condition to attain optimal execu-
tion time. Indeed, following this method, the total runtimes
of the synchronous and asynchronous stripes in Two-Face

should be nearly equal, assuming the simpli�ed cost model
that we use does hold. Additionally, sorting the stripes by
their I8 maximizes the number of stripes classi�ed as asyn-
chronous and minimizes the number of synchronous stripes.
Because the cost of communication for a synchronous stripe
is constant for a given  and, , this strategy minimizes
�><<( and, therefore, the total cost of the operation.

There are other possible methods of classifying stripes.
One such method is to analyze columns of stripes in the
sparse matrix and classify a stripe as synchronous when
its corresponding dense stripe is needed by many nodes
and, therefore, is likely to bene�t from optimized multicast
operations. We leave the investigation of such methods for
future work.

5 The Two-Face Algorithm

In this section, we provide greater details about Two-Face.
We discuss the sparse matrix representation, the Two-Face
algorithm, its tuning and portability, and its applicability to
GNN training.

5.1 Sparse Matrix Representation

Two-Face represents the sparse matrix � in a modi�ed COO
format. The nonzeros in asynchronous stripes are extracted
from � and are stored in an Asynchronous sparse matrix; the
nonzeros in synchronous/local-input stripes are extracted
into a Synchronous/Local-Input sparse matrix. Because we
use a compressed sparse matrix representation, this format
does not signi�cantly increase overall memory use.

Figure 6 shows: (a) an example of an input sparse matrix�,
(b) its corresponding synchronous/local-input sparse matrix,
and (c) its corresponding asynchronous sparse matrix. The
�gure assumes that there are four nodes and one sparse
stripe for each 2x2 megatile. Assume that, after running
the preprocessing step, the stripes have been classi�ed as
local-input, synchronous, and asynchronous such that the
nonzeros in � end up in the categories shown in Figure 6a.
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Figure 6. Sparse matrix representation in Two-Face: (a) an
input sparse matrix �, showing an example of nonzeros
classi�ed into the local-input, sync, and async categories; (b)
the corresponding synchronous/local-input sparse matrix;
and (c) the corresponding asynchronous sparse matrix. This
�gure assumes a 4-node system, a stripe width of 2, and a
row panel height of 1.

The corresponding synchronous/local-input sparse matrix
(Figure 6b) organizes the synchronous/local-input nonzeros
in a row-major order structure. The elements in this structure
are divided into row panels—e.g., nonzeros e and f in Figure 6
are in one row panel. Row panels are the units of work
assigned to threads computing on synchronous/local-input
nonzeros. In Figure 6b, these panels are one row tall, and an
array of Synchronous/Local-input Panel Pointers points to the
beginning of each panel.

The corresponding asynchronous sparsematrix (Figure 6c)
organizes the asynchronous nonzeros within stripes in a
column-major order structure. The order of the stripes them-
selves is row-major, to simplify the distribution of the asyn-
chronous sparse matrix across nodes at runtime. An array of
Asynchronous Stripe Pointers points to the beginning of each
asynchronous stripe.

At runtime, each node will only store those portions of the
synchronous/local-input and asynchronous sparse matrices
that are relevant to its computation. In addition, for each
dense stripe of �, the preprocessing step generates metadata

containing a list of nodes that are destinations of the col-
lective transfer of that stripe. At runtime, this metadata is
replicated across all nodes.

5.2 Two-Face Algorithm Description

The algorithm consists of three parts: top-level algorithm,
processing synchronous row panels, and processing asyn-
chronous stripes. We describe each part in turn.

5.2.1 Top-Level Algorithm. Algorithm 1 shows the top-
level operation of the Two-Face algorithm. All nodes of the
distributed system execute Algorithm 1 in parallel. First,
the node initializes a �ag and two atomic queues for work-
sharing (Lines 2-3). These queues provide indices of asyn-
chronous stripes (0B~=2_@) and indices of row panels (B~=2_@).
In the example of Figure 6, the B~=2_@ of N2 is {4, 5}, which
are the indices of the two pointers in the Sync/Local-Input
Panel Pointers array used by N2 (pointing to rows containing
nonzeros 9 and<). The 0B~=2_@ of N2 is {1}, which is the
index of the pointer in the Asynchronous Stripe Pointers
array that points to the asynchronous stripe assigned to N2.

Algorithm 1 Top-Level Two-Face Pseudo-code.

1: procedure DistSPMM(�, �, �)
2: B~=2_CA0=B 5 4A_3>=4 ← False
3: 0B~=2_@, B~=2_@ ← �=8C&D4D4B (�)

4: DoParallel

5: if C83 = 0 then ⊲ Sync Transfers
6: TransferDenseStripes(�, �)
7: B~=2_CA0=B 5 4A_3>=4 ← True
8: end if

9: if C83 ∈ �B~=2)ℎA403B then ⊲ Async Processing
10: while 0B~=2_@.nonempty() do
11: = ← 0B~=2_@.pop()
12: ProcessAsyncStripe(�, �, � , =)
13: end while

14: end if

15: WaitForFlag(B~=2_CA0=B 5 4A_3>=4)
16: while B~=2_@.nonempty() do ⊲ Sync Compute
17: = ← B~=2_@.pop()
18: ProcessSyncRowPanel(�, �, � , =)
19: end while

20: EndParallel

21: end procedure

Then, the code starting at Line 4 is executed by all the
threads of the node in parallel. Speci�cally, Thread 0 initiates
the transmission/reception of the dense stripes needed for
synchronous operations (Lines 5-8). Data transmission is
implemented as non-blocking, but data reception is blocking.
These transfers are done via a series of calls to MPI_Bcast.
The destination nodes are determined via metadata produced
by the preprocessing step, and these transfers occur at the
stripe granularity.
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In parallel, all the threads assigned to asynchronous stripes
begin processing those stripes (Lines 9-14). Once all needed
dense input data from collectives has been received (Line 15),
all threads (including the asynchronous ones after they have
processed the asynchronous stripes) process the synchro-
nous row panels (Lines 16-19).

5.2.2 Processing Synchronous Row Panels. Algorithm
2 describes the processing of a row panel. The operation
starts by initializing a thread-local Accumulation Bu�er to
zero (acc in Line 2) and reading the row panel (panel in Line 3).
Then, the algorithm iterates through all of the nonzeros in the
row panel, accumulating each result onto acc (Line 10).When
we either complete a row of nonzeros (Line 7) or complete the
whole row panel (Line 13), we add acc to the corresponding
row of � . Atomics are required in this operation because
some threads operating on asynchronous stripes may also
be writing to the same rows of � .

Algorithm 2 Two-Face Sync Compute Pseudo-code

1: procedure ProcessSyncRowPanel(�, �, � , =)
2: 022 ← {0, ..., 0} ⊲ Output row bu�er
3: ?0=4; ← �.?0=4;_?CAB [=]
4: ?A4E_A>F ← ?0=4; [0] .A>F ⊲ Initialize to �rst row
5: for =I ∈ ?0=4; do

6: if =I.A>F ≠ ?A4E_A>F then

7: AtomicAdd(� [?A4E_A>F], 022)
8: 022 ← {0, ..., 0}

9: end if

10: 022 ← 022 + =I.E0; ∗ � [=I.2>;]

11: ?A4E_A>F ← =I.A>F

12: end for

13: AtomicAdd(� [?A4E_A>F], 022)
14: end procedure

5.2.3 Processing Asynchronous Stripes. Algorithm 3
shows the algorithm to process an asynchronous stripe. A
thread reads the asynchronous stripe (stripe in Line 2) and
iterates over the nonzeros in the stripe to identify the unique
2_83s of the nonzeros (Line 3). These determine the indices
of the dense rows from � that are required. The asynchro-
nous thread then initiates the remote access of the dense
rows by calling GetRemoteRows (Line 4). This procedure
uses MPI_Rget and a custom MPI datatype de�ned with
MPI_Type_indexed to select only the rows of interest for
the transfer.
Once the dense rows arrive, they are stored in drows

(Line 4), and multiple threads begin computing on them.
Each thread processes a subset of the nonzeros in the sparse
stripe. Each nonzero is multiplied with the corresponding
row of 3A>FB and accumulated into � (Line 6). Atomics are

Algorithm 3 Two-Face Async Pseudo-code

1: procedure ProcessAsyncStripe(�, �, � , =)
2: BCA8?4 ← �.0B~=2_BCA8?4_?CAB [=]
3: 3A>F_83B ← BCA8?4.UniqueColIDs()
4: 3A>FB ← GetRemoteRows(3A>F_83B)
5: for =I ∈ BCA8?4 do in parallel

6: AtomicAdd(� [=I.A>F], =I.E0; ∗ 3A>FB [=I.2>;])
7: end for

8: end procedure

required for correct accumulation into � , just as in the syn-
chronous stripe case. However, since asynchronous nonze-
ros are stored in column-major order, we cannot easily use
thread-local bu�ers to reduce the number of atomics.
To reduce transfer overheads, inside the GetRemoteRows

routine, we coalesce the transfer of nearby rows of �. For
example, if a sparse stripe requires � rows {2, 3, 6, 8}, we
transfer three groups of rows, with (> 5 5 B4C, B8I4) pairs equal
to {(2, 2), (6, 1), (8, 1)}. This optimization reduces software
overheads. For small  , we also coalesce rows separated by
unused rows, potentially reducing the software overhead fur-
ther, but transferring some useless data. Using the example
from before, we might transfer groups of rows {(2, 2), (6, 3)},
retrieving one unnecessary row (row 7).

5.3 Tuning Knobs and Portability

Two-Face has several parameters that may need to be cali-
brated for each individual system to achieve maximal per-
formance. Among these are the coe�cients used in the pre-
processing cost model (V( , U( , V�, U�, ^�, W�). As mentioned
before, in our evaluation, we determine the values of these
coe�cients via linear regression on a small number of work-
loads. These parameters only need to be calibrated once for
a system, possibly at installation time.
In addition to the preprocessing cost model coe�cients,

the runtime algorithm is parameterized by the number of
threads assigned to sync/async stripe processing, the ag-
gressiveness of row coalescing in async stripe transfers, the
height of the row panels used for computation in the sync
stripes, and the width of the stripes. The optimal choice for
these parameters may vary between systems and workloads,
but we show in Sections 6.2 and 7 that choosing reason-
able, static values can provide good performance. In practice,
these parameters could be determined at installation time
similarly to the preprocessing coe�cients.
Thus, although Two-Face relies on knowledge of system

characteristics to make decisions about how to schedule
the work, porting to a new system just requires a one-time
pro�ling step during installation.

5.4 Applicability to GNN Training

While SpMM is used in a variety of domains, one of the most
important ones is GNN training. GNN training is often done
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in relatively small-scale systems, where the amount of mem-
ory is a limitation. To alleviate this problem, GNN training
algorithms have recently resorted to the use of sampling [25]
and mini-batching. While these techniques reduce the mem-
ory footprint requirements, they may introduce some inac-
curacy [25, 33], and may introduce runtime overhead which
can sometimes increase the end-to-end execution time [23].
In Two-Face, like in most of the prior work in distributed
GNN training [33, 53], we are less concerned about the lack
of memory because we can use the full aggregate memory
of a very large cluster [53]. As a result, we do not consider
sampling or mini-batching and, instead, support full-graph
GNN training.
It is interesting, however, to consider the application of

Two-Face to an environment with sampling or mini-batching.
In principle, in its current form, Two-Face is incompatible
with sampling or mini-batching. This is because, in sam-
pling or mini-batching algorithms, di�erent iterations of the
SpMM computation use a di�erent reduced (or sampled)
matrix. As a result, Two-Face would have to re-run the pre-
processing step every time the reduced matrix changes.
Future work may involve adapting Two-Face to apply to

GNNs with sampling. One possible approach may involve
making preprocessing decisions o�ine once, based on the
expected stripes’ densities, given knowledge of the sampling
to be done at runtime. Then, stripes that are expected to be
dense enough even after sampling would still be classi�ed
as synchronous, and the other stripes would be classi�ed as
asynchronous. At runtime, the graph would still be stored
as shown in Figure 6, but with the addition of masks to �lter
nonzeros eliminated by the sampling at each iteration.
In current full-graph GNN training [35, 54], the prepro-

cessing cost can be easily amortized. We will quantify the
exact cost of the preprocessing step in Section 7.3. In GNN
training, the same sparse matrix is used for hundreds or even
thousands of SpMM iterations. Additionally, in many GNN
applications, the same graph is used for both training and
inference. This is the assumption in most GNNs for semi-
supervised node classi�cation applications [35, 54]. Since
the sparse matrix does not change, the preprocessing done
in training can be reused for inference. For these reasons,
the overhead of Two-Face preprocessing in full-graph GNN
training is negligible.

6 Methodology

Here, we describe our evaluation methodology. We begin
with details about the hardware con�guration and software
libraries used to evaluate Two-Face, as well as the sparse
matrices used as benchmarks. Then, we discuss how we
determined the values of various parameters. Finally, we
describe the other algorithms which we use as baselines to
compare to Two-Face.

6.1 Overview

We evaluate Two-Face andmultiple baseline algorithms using
large matrices on Delta [2], a supercomputer at the National
Center for Supercomputing Applications (NCSA). We use
up to 64 CPU nodes, with a default of 32 CPU nodes. Each
Delta node is a dual-socket system with two 64-core AMD
EPYC 7763 processor chips running at 2.45 GHz and a total
of 256 GiB of DRAM. The nodes are connected through a
Cray Slingshot interconnect [16].
We build on the code published by Bharadwaj et al. [8],

adapting it as necessary to support our algorithms and larger
matrices. We use hybrid OpenMP / MPI programming, with
one MPI rank and 128 OpenMP threads per node. We use
OpenMP 4.5 [43] and Open MPI 4.1.2 [19, 39] with UCX
1.11.2 [49]. All of the baseline algorithms use the Intel Math
Kernel Library [14] (version 2022.0.2) for local SpMM com-
putations. These baselines also rely on CombBLAS [6] for
I/O. Our implementation of Two-Face handles I/O by way
of custom data loaders for our preprocessed sparse matrix
format. All algorithms used in these experiments make use
of Eigen [46] for handling dense matrices locally.

We use eight large sparse matrices from SuiteSparse [15],
described in Table 1. These matrices are derived from a va-
riety of domains, including internet tra�c, social networks,
web crawls, and scienti�c applications.

Table 1. Matrices used in the evaluation. All matrices are
among the largest in SuiteSparse [15] and are square. Stripe
widths are chosen to scale with the number of columns.

Matrix Name # Rows # Nonzeros Stripe

Long Short (Mill) (Mill) Width

mawi_201512020030 mawi 68.86 143.41 128K

Queen_4147 queen 4.15 316.55 8K

stokes stokes 11.45 349.32 32K

kmer_V1r kmer 214.01 465.41 512K

arabic-2005 arabic 22.74 640.00 64K

twitter7 twitter 41.65 1,468.37 128K

GAP-web web 50.64 1,930.29 128K

com-Friendster friendster 65.61 3,612.13 128K

Our evaluation in Section 7 supports the claim that dis-
tributed SpMM is typically a communication-bound work-
load. Thus, we expect that extending Two-Face to other com-
puting hardware would provide similar results. For example,
using GPUs in the nodes may accelerate the local compu-
tation, but communication will remain a bottleneck. Thus,
we expect that Two-Face will still see speedups if used with
GPUs. Here, we evaluate a CPU implementation.

6.2 Two-Face Parameterization

Two-Face is a parameterizable algorithm. To determine its pa-
rameters for our system, we analyzed several combinations
of parameters on a small set of workloads.
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To determine the appropriate width of stripes, we ana-
lyzed the performance of SpMM using the queen, arabic,
and twitter matrices with various choices for, . There was
increasing overhead in both the preprocessing and runtime
steps as the number of stripes grew, suggesting that the stripe
width should not be made too small, relative to the size of the
matrix. We decided to scale the stripe width proportionally
to the dimensions of the matrices, rounding to the nearest
power of two. Table 1 shows the stripe widths we chose.
All run-time parameters other than the stripe width are

held constant across matrices. Table 2 shows these parame-
ters. Each node runs 128 OpenMP threads. Since a large num-
ber of one-sided transfers results in high resource contention,
we limit the number of threads communicating asynchro-
nous data to 2 per node. We allow each of these threads to
fork up to four ways (for a total of 8 threads) when comput-
ing on the asynchronous stripes. We dedicate the remaining
120 threads in the node to computation on the synchronous
and local-input stripes. We de�ne the maximum row coalesc-
ing distance for asynchronous transfers to be proportional
to 1

 
, since the cost of transferring unnecessary dense rows

grows with  .

Table 2. Constant runtime parameters used in Two-Face.

Parameter Name Value

Async Communication Threads per Node 2

Async Computation Threads per Node 8

Sync/Local-Input Computation Threads per Node 120

Max Async Coalescing Distance (127/ ) + 1

Row Panel Height of Sync/Local-Input Sparse Matrix 32 rows

To determine the values of the preprocessing parameters
used in stripe classi�cation (Section 4.2), we employ linear
regression [40]. We collect data by processing the twitter
matrix [36] using  = 32, ? = 32, and nine di�erent com-
binations of stripe widths and asynchronous/synchronous
stripe classi�cations. The number of samples is kept small
to ensure that it is reasonable to calibrate these coe�cients
when installing Two-Face on a new system. The derived coef-
�cient values, which we use when preprocessing all matrices
in our evaluation (unless otherwise speci�ed), are shown in
Table 3.

These coe�cients provide some insight into the perfor-
mance di�erence between one-sided asynchronous and col-
lective synchronous communication. For example, they sug-
gest that asynchronous transfers are more expensive per
transferred element of � than synchronous transfers by a
factor of V�/V( ≈ 18.5.
In Section 7.4 of our evaluation, we evaluate the impact

of di�erent values of these coe�cients.

6.3 Algorithms Evaluated

In our evaluation, we compare Two-Face to other algorithms
shown in Table 4. All the algorithms use 1D partitioning. We

Table 3. Coe�cient values used in the preprocessing of
matrices. The V parameters relate to the system bandwidth,
the U parameters relate to other communication overheads,
and the W & ^ terms relate to computational throughput and
other overheads.

Coe�cient Experimental Value

V( 1.95 × 10−10

U( 1.36 × 10−6

V� 3.61 × 10−9

U� 1.02 × 10−5

W� 2.07 × 10−8

^� 8.72 × 10−9

divide the dense input matrix � into as many equally-sized
portions as the number of nodes ? , and call each portion a
“block”. The � matrix is distributed across all nodes, where
each node stores a single block.

Table 4. SpMM algorithms being compared.

Algorithm Name MPI Transfer Operations

Dense Shifting [8] MPI_Allgather, MPI_Sendrecv

Allgather MPI_Allgather

Async Coarse-Grained MPI_Get

Two-Face MPI_Rget, MPI_Ibcast

Async Fine-Grained MPI_Rget

Dense Shifting (DS) is a synchronous SpMM algorithm
that has been investigated by Bharadwaj et al. [8] and found
to be highly competitive compared to other state-of-the-art
implementations. We use it as our main baseline. DS begins
by using MPI_Allgather to replicate a certain number of
blocks in each node, as determined by a replication factor 2 .
It then continues by shifting the replicated blocks cyclically
via MPI_Sendrecv after each computation step. For instance,
with 2 = 4, this algorithm replicates each block such that
each node holds four blocks at a time. It then performs ?/2
computation and shifting steps to complete the SpMM op-
eration. In our experiments, we evaluate this algorithm for
2 = 2, 2 = 4, and 2 = 8, and refer to these settings as DS2,
DS4, and DS8, respectively.
The next two algorithms replicate all or nearly all of the

matrix � before beginning the computation. In Allgather,
each node uses MPI_Allgather to broadcast its block of � to
all others and receive theirs in turn. In Asynchronous Coarse-

Grained, each node uses MPI_Get to obtain the blocks that it
needs for its computation. In both cases, substantial memory
has to be allocated, creating issues as the problem size scales.

Two-Face is the algorithm we propose. We use the parame-
ters as described before. However, if the preprocessing algo-
rithm determines that the chosen sync/async classi�cation
of stripes would result in too much memory consumption
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Figure 7. Speedups of various SpMM algorithms over DS2 for  = 32.
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Figure 8. Speedups of various SpMM algorithms over DS2 for  = 128.
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Figure 9. Speedups of various SpMM algorithms over DS2 for  = 512.

in one or more nodes during SpMM execution, it will clas-
sify additional stripes as async until the expected memory
consumption in those nodes is feasible.
Asynchronous Fine-Grained is implemented in the same

way as Two-Face, except that all stripes are asynchronous.
This algorithm is used as an extreme example to illustrate
the tradeo�s made by a balanced Two-Face implementation.
This baseline was used in Section 3.

All algorithms are evaluated by averaging out the time of
5 consecutive SpMM operations. By default, our experiments
use ? = 32 and  = 128. Some experiments use  = 32 or
 = 256, and others use ? = 1, 2, 4, 8, 16, 32, or 64.

7 Evaluation

In this section, we evaluate Two-Face. First, we compare the
performance of Two-Face to the various baselines and dis-
cuss any bottlenecks observed. Next, we discuss the scaling
behavior of Two-Face as we vary the number of nodes in
the system. Finally, we analyze the preprocessing cost of
Two-Face and the sensitivity of Two-Face to the choice of the
preprocessing parameters.

7.1 Comparing Two-Face to Various Baselines

Figures 7, 8, and 9 show the speedups of Two-Face and the
other SpMM algorithms over DS2 for  = 32,  = 128,
and  = 512, respectively. We normalize to DS2 because,
unlike DS4 or DS8, DS2 does not run out of memory for any
matrices or value of in our evaluation. From the �gures, we
see that, on average, across matrices and  values, Two-Face
is the fastest algorithm, and delivers substantial speedups.

As  increases, the advantage of Two-Face over the dense
shifting algorithms becomes more prominent. This is be-
cause the cost of transferring unnecessary rows in the dense
shifting algorithms increases with  , providing a greater
advantage to the �ne-grained one-sided accesses of Two-
Face. At  = 32, Two-Face’s average speedup over the dense
shifting algorithm with the best choice of replication factor
for each individual matrix is 1.53x. At  = 128, the same
speedup is 2.11x, and at  = 512, is it 2.35x. The average
speedup across all values of  shown here is 1.99x.

The Async Fine and dense shifting algorithms are on aver-
age faster than the Async Coarse and Allgather algorithms.
Dense shifting is sometimes unable to run with higher repli-
cation factors due to memory constraints. For example, for
 = 512, DS8 fails to run for half of the matrices, and DS4
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Table 5. Absolute execution times of DS2 and Two-Face for the experiments in Figures 7, 8, and 9. The numbers are the average
of �ve SpMM operations.

web queen stokes arabic mawi kmer twitter friendster

K=32 DS2 (seconds) 1.97 0.28 0.96 1.32 6.46 6.33 4.17 8.79

Two-Face (seconds) 0.56 0.08 0.23 0.26 8.50 6.70 5.71 8.41

K=128 DS2 (seconds) 7.198 0.86 2.22 3.85 19.78 35.77 11.57 20.61

Two-Face (seconds) 1.10 0.19 0.94 0.65 15.18 14.98 20.24 30.08

K=512 DS2 (seconds) 38.86 2.89 9.34 21.46 97.95 136.21 52.77 83.02

Two-Face (seconds) 4.46 0.634 3.552 2.74 55.40 62.77 86.62 117.31

web queen stokes arabic mawi kmer twitter friendster
DS4 DS4 DS4 DS4 DS4 DS4 DS4 DS4

2-F
ace

2-F
ace

2-F
ace

2-F
ace

2-F
ace

2-F
ace

2-F
ace

2-F
ace

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Ex

ec
 T

im
e

Sync Comp
Sync Comm

Async Comp
Async Comm

Other

Figure 10. Breakdown of the total execution times of DS4 and Two-Face for = 128. Two-Face’s time is divided into synchronous
and asynchronous components (left and right bars, respectively), which operate in parallel. These are further broken down
into computation (Comp) and communication (Comm). DS4 only has a Sync component. The Other category mainly consists of
the initial setup of data structures for MPI. Execution times are normalized to DS4.

fails in one matrix. As a reference, Table 5 provides the abso-
lute execution times of Two-Face and DS2 in these �gures.
The �gures also show that the speedups (or slowdowns)

are highly dependent on the matrix. For example, Two-Face
is not the fastest algorithm for twitter and friendster and, for
 = 32, additionally for mawi and kmer. To understand this
behavior, Figure 10 breaks down the total execution time
of DS4 and Two-Face for each matrix for  = 128. For Two-
Face, we break down the execution time into Sync Comp,
Sync Comm, Async Comp, and Async Comm. We stack the
Sync components in the left bar and the Async components
in the right bar, and show both bars side-to-side, since the
execution time is equal to the highest of the two bars. Two-
Face also has some Other overheads, which mainly consist of
initializing necessary MPI structures before the main com-
munication/computation begins. For DS4, only Sync Comp

and Sync Comm are relevant. For each matrix, the bars are
normalized to DS4.
We see that the dominant contributor to DS4’s execu-

tion time is its communication. Two-Face is able to attain
signi�cant speedups over DS4 by reducing the amount of
communication through �ne-grained accesses. In �ve of the
matrices, we can see that the sum of the communication
time spent by Two-Face in Sync Comm and Async Comm is
signi�cantly less than the amount of time spent by DS4 in
its communication.

Two exceptions are twitter and friendster. In these ma-
trices, Two-Face’s Sync Comp and Sync Comm have both
increased over DS4, despite the fact that less data is being
transferred. We note that Two-Face’s synchronous broadcast
operations are signi�cantly slower than the cyclic shifting
operations in DS4 when a large portion of the input dense
matrix is required by many nodes. When Two-Face operates
on a matrix like friendster, each node participates in many
more MPI calls than it does if dense shifting is used, due to
the �ner granularity of the transfers.
An interesting case is mawi, where Two-Face is unable

to reduce the execution time over DS4 because of the cost
of asynchronous computation. The mawi sparse matrix has
regions that have a relatively high density of nonzeros. Com-
puting on such asynchronous stripes is likely expensive due
to the heavy use of atomics, as the nonzeros are organized in
column-major order. During this work, we conducted initial
tests into storing the nonzeros in row-major order instead.
However, this change did not result in faster execution, as
the cost of identifying which columns contained nonzeros
(and therefore which dense rows were required) became
drastically higher.

7.2 Two-Face Strong Scaling

Figure 11 shows the execution times of Two-Face and the
dense shifting algorithm with di�erent replication factors
(DS1, DS2, DS4, and DS8) as we scale the number of nodes
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Figure 11. Execution time of Two-Face and the dense shifting algorithm with di�erent replication factors (DS1, DS2, DS4,
and DS8) as the number of nodes changes. The  value is 128. Some data points for the dense shifting algorithm are missing
because they need too much memory or take too long to execute. Both axes in the plots use a logarithmic scale.

from 1 to 64. There is a plot for each matrix and both axes
are in logarithmic scale. Some data points are missing, since
some workloads either exceed the memory capacity of one or
more nodes (at small node counts or high replication factors)
or take too long to run.
The �gure shows that, in most of the matrices, Two-Face

scales well with the number of nodes and, in fact, as well or
better than the dense shifting algorithm. The exceptions are
mawi, twitter, and, to a lesser extent, friendster. With mawi,
none of the algorithms scale particularly well due to the high
load imbalance across nodes induced by the matrix. With
twitter and friendster, we saw in Figure 10 that Two-Face is
impacted by ine�cient synchronous communication. This is
the reason for the worse scaling performance.

To understand the behavior of twitter and friendster better,
we pro�le the collectives in the 64-node runs. We measure
the number of recipients of each multicast operation. On
average, this number is 35.7 for twitter and 43.5 for friend-
ster. In contrast, the matrix with the next largest average
recipient count is kmer, with an average of only 5.7. It ap-
pears that the large collectives needed for Two-Face in twitter
and friendster are responsible for the ine�cient execution
and limited scaling. This e�ect does not appear at low node
counts, where the execution is primarily bottlenecked by
local computation, but it dominates at high node counts. Fu-
ture work should investigate methods to reduce the size of
collectives in the algorithm or the design of more regular
data movement patterns for the synchronous stripes.

Overall, the performance of Two-Face improves as we scale
from 1 to 64 nodes by 7.47x on average, with a best-case

speedup of 12.12x for queen and a worst-case of 0.76x for
twitter. Moreover, compared to the dense shifting algorithm
with the optimal replication factor, Two-Face sees an average
speedup ranging from 1.25x at 4 nodes to 2.21x at 64 nodes.

7.3 Two-Face Preprocessing Cost

Two-Face requires a preprocessing step that involves, mainly:
(1) running ourmodel to classify the stripes into synchronous
and asynchronous, and (2) creating the asynchronous and
the synchronous/local-input sparse matrices. In this section,
we give an idea of the execution time of the preprocessing
step. Note that we have not fully optimized it; in particular,
we have not parallelized it across multiple nodes. Therefore,
the numbers reported are a pessimistic bound.

Table 6. The overhead of preprocessing in Two-Face, nor-
malized to the cost of a single SpMM operation.

Matrix C=>A<_�/$ C=>A<

web 428.74 102.00

queen 302.55 23.60

stokes 116.70 11.18

arabic 180.35 36.57

mawi 2.58 1.50

kmer 6.16 3.25

twitter 17.89 7.29

friendster 19.81 8.79

Average 134.35 24.27

Table 6 shows the overhead of the preprocessing step
for 32 nodes and  =128 for each matrix. Column 2 shows
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Figure 12. Sensitivity of Two-Face’s execution time to the values of the parameters of the execution model used during the
preprocessing step. The default values of these parameters, as set in Section 6.2 and used in all the earlier experiments, are
represented with the 0 subscript (e.g., U�0).

C=>A<_�/$ , which is the time of the preprocessing step nor-
malized to the time of one SpMM operation. On average,
C=>A<_�/$ is 134.35. However, the preprocessing step is domi-
nated by I/O time, as the original sparse matrix is read from
the �le system in a textual Matrix Market format [9] and
the �nal asynchronous and synchronous/local-input sparse
matrices are written to the �le system in a bespoke binary
format.

Since in many realistic environments, this I/O will not be
present, Column 3 shows the more relevant C=>A< , which is
the preprocessing overhead without I/O normalized to the
time of one SpMM operation. In this case, the numbers have
reduced substantially. We see that C=>A< ranges from 1.50 to
102.00, with an average of 24.27. For  = 512 (not shown in
the table), the average value of C=>A< is 6.15.
From these numbers, we see that the cost of the prepro-

cessing step can be easily amortized. For the matrices where
Two-Face demonstrates a speedup over dense shifting when
 = 128, an average of only 15 SpMM operations need to
be performed by Two-Face to already see a speedup when
including preprocessing time. For  = 512, this decreases
to only 3 SpMM operations, on average. In contexts such as
GNN training, with hundreds of epochs, we can expect to
perform many more SpMM operations with the same matri-
ces than these numbers. In addition, the preprocessing step
from training may be reusable during inference.

7.4 Sensitivity to Parameter Values of the

Preprocessing Model

The model of execution that we use during preprocessing
(Section 4.2) uses parameters U�, V�, U( , V( , W�, and ^�. In
Section 6.2, we used linear regression to set their default
values. We used such values in all the experiments so far.

In this section, we change the values of these parame-
ters, repeat the experiments, and measure the changes in
Two-Face’s execution time. We perform three sets of changes.

In the �rst one, we vary U� and V�, keeping the other pa-
rameters unchanged. Speci�cally, if U�0 and V�0 are the de-
fault values of U� and V�, we consider all combinations of
{0.8 · U�0, U�0, 1.25 · U�0} × {0.8 · V�0, V�0, 1.25 · V�0}. In
the second set of changes, we vary U( and V( in the same
way, keeping the other parameters unchanged. Finally, we
vary W� and ^�, again keeping the others unchanged.

Figure 12 shows the outcome of the three sets of changes
for the average of three representative matrices: web (Two-
Face’s best case), twitter (Two-Face’s worst case), and stokes
(Two-Face’s median case). For example, Figure 12a corre-
sponds to the experiments varying U� and V�. The number
in each box is Two-Face’s execution time with the new param-
eters relative to Two-Face’s execution time with the default
parameters. For example, if we use 0.8 · U�0 and 1.25 · V�0,
the Two-Face’s execution time becomes 1.31x higher than
when using the default values.

Overall, the �gure shows that using the default parameters
obtained using linear regression is a good choice. Changes to
the parameter values typically end up increasing Two-Face’s
execution time. The execution time decreases in only two
cases, and the decrease is small.

8 Related Work

Distributed SpMM: Existing work on distributed SpMM is
rather limited, but there are recent works exploring the topic.
Bharadwaj et al. [8] investigate distributed SpMM, SDDMM,
and methods of fusing the two for machine learning appli-
cations. The implementations of dense shifting evaluated in
our paper originate from their work. Additionally, Bharad-
waj et al. [8] present a sparse shifting implementation. In our
work, we did not evaluate their approach, since it partitions
the dense input and output matrices in a way that requires
additional all-to-all communication for GNNs or other ap-
plications that interleave SpMM with a row-wise operator.
Bharadwaj et al. [8] compare their implementations to the
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SpMM provided by PETSc [7]. Selvitopi et al. [48] investi-
gate multiple algorithms for SpMM, including algorithms
that use bulk-synchronous collective communication and
algorithms that use one-sided asynchronous RDMA commu-
nication. They do not, however, investigate combining these
communication primitives in a single algorithm.
GNN Training: Prior work has addressed the issue of large
graphs in GNN training via sampling techniques [25]. How-
ever, the bene�ts of sampling can come at a cost to accuracy,
leading prior work to investigate full-batch distributed GNN
training [33, 53]. However, in Tripathy et al. [53], dense ma-
trices used in SpMM operations are only transferred in a
coarse-grained sparsity-unaware fashion. Conversely, Jia et
al. [33], using Lux [32], assume a GNN runtime that operates
via pushing/pulling node embeddings in a �ne-grained man-
ner. This is distinct from Two-Face, which uses a combination
of coarse and �ne-grained transfers to leverage the bene�ts
of both approaches.
Non-Distributed Sparse Kernels: SpMM optimization has
been the topic of several investigations.Works such asWACO
[56], WISE [57], and DDB [58] attempt to optimize sparse
computations by using machine learning techniques to pre-
dict the performance of various con�gurations. Many CPU
and GPU tiling techniques and implementations have been
published [27, 30, 37, 41]. Other sparse kernels have also
been subject to several investigations aiming to tame irregu-
lar access patterns [24, 28, 42, 52]. These optimizations for
non-distributed kernels may be applicable to the distributed
case, but they tend to assume a shared memory system, and
they are largely orthogonal to our work.

Recently, SpMM, SpMV, and SpGEMM kernels for hetero-
geneous hardware have been proposed [13, 20, 38]. Cheng
et al. [13] tackle SpGEMM on asymmetric multicore proces-
sors. HotTiles [20] partitions the SpMM sparse input matrix
into two types of regions and assigns each region type to a
di�erent accelerator by solving an optimization problem.
OtherDistributed SparseKernels:Other distributed sparse
kernels have recently received attention. CombBLAS [6] is
a library for distributed sparse kernels such as SpGEMM
and SpMV. CombBLAS provides a number of GPU SpMM
implementations using di�erent partitioning and communi-
cation patterns. All of them use sparsity-unaware collectives.
In contrast, Two-Face uses a hybrid approach. Hussain et
al. [31] investigate communication-avoiding algorithms for
SpGEMM. DGCL [10] is a library for distributed GNN train-
ing that partitions graphs and processes GNN computations
at the level of nodes in the graphs, without explicitly express-
ing the computation with SpMM operations.
Domain-speci�c Architectures and Network Support:

Several architectural designs that o�er hardware support
for SpMM computation have been recently proposed [21,
26, 34, 44, 50]. SPADE [21] is an accelerator for SpMM and
SDDMM designed to be tightly coupled with CPU cores. Ten-
saurus [50] and ExTensor [26] are accelerators for a variety

of sparse kernels. We believe that algorithms such as Two-
Face can be useful in orchestrating the communication in
scaled-up multi-node versions of these accelerators or for
other large-scale graph analytics architectures [1, 4, 45]. In
addition, we believe that such algorithms can also be bene�-
cial for inter-cube or inter-chip communication in PIM-based
architectures for graph analytics [5, 22, 59, 60]

Finally, scheduling algorithms for collectives such as Themis
[47] have been proposed to maximize the bandwidth utiliza-
tion of multidimensional, heterogeneous networks. These
works could inspire network hardware support for Two-Face,
but one would also require innovations to support the asyn-
chronous communication operations.

9 Conclusion

Sparse matrices often contain regions that are denser and
regions that are sparser. Based on the observation, this pa-
per presented Two-Face, an algorithm for distributed SpMM
that, leveraging a preprocessing model, performs collective
communications for the denser regions, and �ne-grained
one-sided communications for the sparser regions. Two-Face
attains an average speedup of 2.11x over dense shifting when
evaluated on a 4096-core supercomputer. Additionally, Two-
Face scales well with the machine size.

Two-Face suggests that distributed sparse algorithms should
be input-matrix aware, in that di�erent sections of a sparse
input matrix prefer using di�erent communication meth-
ods. The algorithms should also be communication-oriented,
since minimizing communication is a �rst-class concern.

With simple modi�cations, the Two-Face algorithm should
also be applicable to sparse kernels such as Sampled Dense-
Dense Matrix Multiplication (SDDMM), which exhibits very
similar patterns to SpMM. Likewise, with proper parameter
tuning, Two-Face may also be applicable to accelerate SpMV,
which is a special case of SpMM. We are investigating these
and other algorithms.
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