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Abstract

Last-level cache side-channel attacks have beenmostly demon-

strated in highly-controlled, quiescent local environments.

Hence, it is unclear whether such attacks are feasible in a

production cloud environment. In the cloud, side channels

are flooded with noise from activities of other tenants and,

in Function-as-a-Service (FaaS) workloads, the attacker has

a very limited time window to mount the attack.

In this paper, we show that such attacks are feasible in

practice, although they require new techniques. We present

an end-to-end, cross-tenant attack on a vulnerable ECDSA

implementation in the public FaaS Google Cloud Run envi-

ronment. We introduce several new techniques to improve

every step of the attack. First, to speed-up the generation

of eviction sets, we introduce L2-driven candidate address
filtering and a Binary Search-based algorithm for address

pruning. Second, to monitor victim memory accesses with

high time resolution, we introduce Parallel Probing. Finally,
we leverage power spectral density from signal processing to

easily identify the victim’s target cache set in the frequency

domain. Overall, using these mechanisms, we extract a me-

dian value of 81% of the secret ECDSA nonce bits from a

victim container in 19 seconds on average.

CCS Concepts: • Computer systems organization →
Cloud computing; • Security and privacy → Hardware

attacks and countermeasures.

Keywords: Cloud computing, Last-level cache side-channel

attack, Prime+Probe attack
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1 Introduction

In modern public cloud environments, mutually-distrusting

tenants share the underlying physical hardware resources.

As a result, an attacker can monitor a victim tenant’s secret-

dependent usage of shared resources through various mi-

croarchitectural side channels and exfiltrate sensitive infor-

mation [13–16, 24, 30, 32, 41, 42, 46, 48, 51, 56, 57, 60, 64, 65,

68, 69, 86, 92, 99, 102, 104, 106, 108].

A particularly dangerous class of attacks is Prime+Probe

attacks on the last-level cache (LLC) [29, 39, 41, 51, 56, 71,

102]. This is because these attacks do not require the attacker

to share a physical core or memory pages with the victim

program. In such an attack, the attacker monitors the victim

program’s secret-dependent accesses to one or several LLC

sets. We refer to these LLC sets as the target LLC sets.
Mounting LLC Prime+Probe attacks in the modern public

cloud requires several steps [39, 41, 56, 75, 111], as listed

in Table 1. First, the attacker co-locates their program with

the target victim program on the same physical machine

(Step 0) [75, 89, 100, 111]. Second, the attacker prepares LLC

channels by constructing LLC eviction sets (Step 1) [41, 56].

An Eviction Set for a specific LLC set is a set of addresses

that, once accessed, can evict any cache line mapped to that

LLC set [41, 56]. Using an eviction set for an LLC set 𝑠 , the

attacker can monitor victim memory accesses to 𝑠 .

In practice, the attacker does not generally know the target

LLC sets. Hence, in Step 1, the attacker needs to build hun-
dreds to tens of thousands of eviction sets, each corresponding
to a potential target LLC set [41, 56, 63]. Then, the attacker

scans through the potential target LLC sets and identifies the

actual target LLC sets (Step 2). Finally, the attacker monitors

the target LLC sets with Prime+Probe and exfiltrates the

https://doi.org/10.1145/3620665.3640403
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Table 1. Steps of an LLC Prime+Probe attack in clouds.

Step Description Discussed in

Step 0.

Co-location

Co-locate the attacker program

on the same physical host as the

target victim program

[111]

Step 1.

Prepare LLC

side channels

Construct numerous eviction

sets, each corresponding to a po-

tential target LLC set

Sections 4–5

Step 2.

Identify target

LLC sets

Scan LLC sets to identify those

that the victim accesses in a

secret-dependent manner

Sections 6–7

Step 3.

Exfiltrate

information

Monitor the target LLC sets and

extract information

Sections 6–7

secret (Step 3). Since co-location can be achieved using tech-

niques discussed in our prior work [111], this paper focuses

on Steps 1–3, hereafter referred to as “attack steps.”

1.1 Challenges of LLC Prime+Probe in Clouds

Despite the potency of LLC Prime+Probe attacks, executing

them in a modern public cloud environment is challenging

for several reasons. First, the modern cloud is noisy, as the
hardware is shared by many tenants to attain high compu-

tation density [28, 87, 105]. In particular, the LLC is flooded

with noise created by activities of other tenants. This noise

not only interferes with eviction set construction (Step 1),

but also poses challenges to identifying the target LLC sets

(Step 2) and exfiltrating information (Step 3).

Second, the modern cloud is dynamic. With cloud com-

puting paradigms like Function-as-a-Service (FaaS) [7, 8, 19],

user workloads are typically short-lived on a host (e.g., they

last only from a few minutes to tens of minutes [4, 9, 20, 35,

93]). As a result, the attacker has a limited time window to

complete all the attack steps while co-locating with the vic-

tim. This challenge is exacerbated by the increased number

of LLC sets in modern processors—which require preparing

more eviction sets and monitoring more cache sets.

Third, the lack of huge pages in some containerized envi-

ronments [19] and the wide adoption of non-inclusive LLCs

increase the effort to execute LLC Prime+Probe attacks in

clouds [102]. Thus, while İnci et al. [38, 39] conducted an LLC

Prime+Probe attack on AWS EC2 in 2015, their techniques

are incompatible with modern clouds, as they relied on huge

pages, long-running attack steps, and inclusive LLCs.

As a result of the aforementioned challenges, cloud ven-

dors believe that LLC Prime+Probe attacks are not a threat

“in the wild.” For instance, the security design whitepaper of

Amazon’s Elastic Compute Cloud (EC2) [6] explicitly rules

out LLC Prime+Probe attacks as impractical [3].

1.2 This Paper

This paper refutes the belief that LLC Prime+Probe attacks

are impractical in the noisy modern public cloud. We demon-

strate an end-to-end, cross-tenant attack on cryptographic

code (a vulnerable ECDSA implementation [62]) on Cloud

Run [19], an FaaS platform from Google Cloud [18]. Every

step of the attack requires new techniques to address the

practical challenges posed by the cloud. While our demon-

strated attack targets Google Cloud Run, the techniques that

we develop are applicable to any modern Intel server with a

non-inclusive LLC. Therefore, we believe that multi-tenant

cloud products from other vendors, such as AWS [5] and

Azure [10], may also be susceptible to our attack techniques.

This paper makes the following contributions:

1 Existing Prime+Probe approaches fail in the cloud.

We show that Steps 1–3 of Prime+Probe in Table 1 are made

harder in the Cloud Run environment. In particular, we show

that state-of-the-art eviction set construction algorithms,

such as group testing [73, 81, 90] and Prime+Scope [71],

have a low chance of successfully constructing eviction sets

on Cloud Run. Due to the noise present, they take 10× to

24× as much time as when operating in a quiescent local

setting. Since the attacker needs to construct eviction sets

for up to tens of thousands of LLC sets within a limited time

window, this low performance makes existing eviction set

construction algorithms unsuitable for the public cloud.

2 Effective construction of eviction sets in the cloud.

To speed-up the generation of eviction sets in Step 1, we

introduce: (1) a generic optimization named L2-driven can-
didate address filtering that is applicable to all eviction set

construction algorithms, and (2) a new Binary Search-based
eviction set construction algorithm. By combining these two

techniques, it takes only 2.4minutes on average to construct

eviction sets for all the 57,344 LLC sets of an Intel Skylake-SP

machine in the noisy Cloud Run environment, with a median

success rate of 99.1%. In contrast, utilizing the well-optimized

state-of-the-art eviction set construction algorithms, this pro-

cess is expected to take at least 14.6 hours.

3 Techniques for victim monitoring and target set

identification.Wedevelop two novel techniques for Steps 2–

3. The first one, called Parallel Probing, enables the moni-

toring of the victim’s memory accesses with high time res-

olution and with a quick recovery from the noise created

by other tenants’ accesses. The technique probes a cache

set with overlapped accesses, thus featuring a short probe

latency and a simple high-performance prime pattern.

The second technique identifies the target LLC sets in a

noise-resilient manner. This technique leverages power spec-
tral density [96] from signal processing to detect the victim’s

periodic accesses to the target LLC set in the frequency do-

main. It enables the attacker to identify the target LLC set in

6.1 s, with an average success rate of 94.1%.

4 End-to-end attack in production. Using these tech-

niques, we showcase an end-to-end, cross-tenant attack on

a vulnerable ECDSA implementation [62] on Cloud Run.

We successfully extract a median value of 81% of the secret

ECDSA nonce bits from a victim container. The complete

end-to-end attack, which includes Steps 1–3 from Table 1,
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takes approximately 19 seconds on average after co-locating

on the victim’s host.

Availability. We open sourced our implementations at

https://github.com/zzrcxb/LLCFeasible.

2 Background

2.1 Cache-Based Side-Channel Attacks

Since caches are shared between processes in different secu-

rity domains, they provide an opportunity for an attacker

to exfiltrate sensitive information about a victim process by

observing their cache utilization. This constitutes a cache-
based side-channel attack. Such attacks can be classified into

reuse-based attacks and contention-based attacks [54].
Reused-based attacks rely on shared memory between

attacker and victim, often the consequence of memory dedu-

plication [2]. In such attacks, the attacker monitors whether

shared data are brought to the cache due to victim accesses.

Notable examples of such attacks include Flush+Reload [104],

Flush+Flush [32], and Evict+Reload [33]. However, as mem-

ory deduplication across security domains is disabled in the

cloud [3, 79], these attacks are inapplicable.

Contention-based attacks, such as Prime+Probe [64, 68],

do not require shared memory between attacker and victim.

In a Prime+Probe attack, the attacker monitors the victim’s

memory accesses to a specific cache set 𝑠 . The attack be-

gins with the attacker priming 𝑠 by filling all its ways with

attacker’s cache lines. Subsequently, the attacker continu-

ously probes these lines, measuring the latency of accessing

them. If the victim accesses 𝑠 , it evicts one of the attacker’s

cache lines, which the attacker can detect through increased

probe latency. The attacker then re-primes 𝑠 and repeats the

probing process to continue monitoring.

Cloud vendors generally prevent processes of different

tenants from sharing the same physical core at the same

time [3, 50]. Therefore, the attacker has to perform a cross-
core attack targeting the shared LLC. On modern processors,

the LLC is split into multiple slices. Each physical address is

hashed to one of the slices.

2.2 Eviction Sets

A key step in Prime+Probe is the construction of an eviction
set [56, 90]. An eviction set for a specific cache set 𝑠 is a set of

addresses that, once accessed, evict any cache line mapped

to 𝑠 [56, 90]. Given a𝑊 -way cache, an eviction set needs

to contain at least𝑊 addresses that are mapped to 𝑠 . These

addresses are referred to as congruent addresses [90]. An
eviction set is minimal if it has only𝑊 congruent addresses.

2.2.1 Eviction Set Construction Algorithms. Building

a minimal eviction set for a cache set 𝑠 generally consists of

two steps [56, 90]. The first step is to create a candidate set
that contains a sufficiently large set of candidate addresses,
of which at least𝑊 addresses are congruent in 𝑠 . The second

step is to prune the candidate set into a minimal set.

Page Offset

L2 Cache

LLC

4kB Page

5111516 0

PA[11:0]=VA[11:0]

VA

PA

PA

Virtual Page Number

Attacker-controlled bits

LLC Slice Bits Line Offset Bits

L2 Set Index

LLC Set Index

Figure 1.Mapping addresses to Skylake-SP’s L2 and LLC.

1 Candidate set construction. When a program accesses

a virtual address (VA), the address is translated to a physical

address (PA) during the access. Part of the PA is used to

determine to which cache set the PA maps. For example,

Figure 1 illustrates the address mapping of Intel Skylake-

SP’s L2 and LLC. The L2 uses PA bits 15–6 as the set index

bits to map a PA to an L2 set. The LLC uses PA bits 16–6 as

the set index bits. All the PA bits except for the low-order 6

bits are used to map a PA to an LLC slice [58]. The low-order

6 bits of the PA and VA are shared and are the line offset bits.

The low-order 12 bits of the PA and VA are also shared and

are the page offset bits. This is because the standard page

size is 4 kB.

An unprivileged attacker can control only the page offset

of a PA. They lack control and knowledge of the higher-order

PA bits. As a result, the attacker has only partial control and

knowledge of the set index bits of the L2 and LLC, as well

as of the slice index bits of the LLC. Therefore, for a given

attacker-controlled VA, there are a number of possible L2 or

LLC sets to which it may map. We refer to this number as

the cache uncertainty, denoted by𝑈 .

In general, the set index bits are directly used as the set

number. Therefore, the L2 cache’s uncertainty is 𝑈𝐿2 = 2
𝑛𝑢𝑐

,

where 𝑛𝑢𝑐 is the number of uncontrollable L2 set index bits.

For the sliced LLC, its uncertainty depends on the slice hash

function. On modern processors, LLC slice bits usually map

to individual slices via a complex, non-linear hash func-

tion [58, 102]. As a result, partial control over the slice index

bits is not enough to reduce the number of possible slices

that a VA might hash to. Hence, the LLC’s uncertainty is

𝑈𝐿𝐿𝐶 = 2
𝑛𝑢𝑐 × 𝑛𝑠𝑙𝑖𝑐𝑒𝑠 , where 𝑛𝑢𝑐 is the number of uncon-

trollable LLC set index bits and 𝑛𝑠𝑙𝑖𝑐𝑒𝑠 is the number of LLC

slices. In the Skylake-SP’s address mapping shown in Fig-

ure 1, there are 5 uncontrollable LLC set index bits and 4

uncontrollable L2 set index bits. Hence, a 28-slice Skylake-SP

has an LLC uncertainty of𝑈𝐿𝐿𝐶 = 2
5 × 28 = 896 sets and an

L2 uncertainty of𝑈𝐿2 = 2
4 = 16 sets.

When constructing a candidate set for a target cache set

𝑠 at page offset 𝑜 , the set needs to contain a large number

of addresses with page offset 𝑜 due to cache uncertainty.

Intuitively, the cache uncertainty𝑈 indicates how unlikely a

candidate address maps to 𝑠 . Therefore, the greater the value

of𝑈 , the larger the candidate set needs to be [81, 90].

https://github.com/zzrcxb/LLCFeasible
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2 Pruning the candidate set into a minimal eviction

set. Given a candidate set, there are several algorithms [56,

70, 71, 73, 90, 101] to build a minimal eviction set with𝑊

congruent addresses. We briefly describe two state-of-the-

art algorithms [71, 73, 90]. To simplify the discussion, we

assume that there is an address𝑇𝑎 that is mapped to cache set

𝑠 and accessible by the attacker. Consequently, the attacker

can determine if a set of addresses forms an eviction set for

𝑠 by testing whether they evict 𝑇𝑎 after being accessed.

Algorithm 1: Group testing [73, 90]. Group testing splits the

candidate set into𝐺 groups of approximately the same size. A

common choice of𝐺 is𝐺 =𝑊 +1 [73, 90]. After the split, the
algorithm withholds one group from the candidate set and

tests whether the remaining addresses can still evict𝑇𝑎 . This

process involves first loading 𝑇𝑎 into the cache, traversing

the remaining addresses, and timing an access to𝑇𝑎 to check

if it remains cached. If 𝑇𝑎 is evicted, the withheld group is

discarded and the candidate set is reduced; otherwise, the

withheld group is added back to the candidate set and the

algorithm withholds a different group. Overall, with 𝐺 =

𝑊 + 1, group testing has a complexity of 𝑂 (𝑊 2𝑁 ) memory

accesses [90], where𝑊 is the associativity of the target cache

and 𝑁 is the candidate set size.

Algorithm 2: Prime+Scope [71]. Prime+Scope first loads 𝑇𝑎 .

Then, it sequentially accesses each candidate address from

the list. After each candidate address is accessed, the algo-

rithm checks whether 𝑇𝑎 is still cached. If it is not, that indi-

cates that the last accessed candidate address is congruent,

and it is added to the eviction set. This search for congruent

addresses is repeated until𝑊 different congruent addresses

are identified, which form a minimal eviction set for 𝑠 .

2.2.2 Number of Eviction Sets. In practice, a victim often

accesses only a few target cache sets in a secret-dependent

manner. An unprivileged attacker, however, generally has

limited or no information about the locations of these target

cache sets. Consequently, in Step 1 of Table 1, the attacker

needs to build eviction sets for all possible cache sets that

might be the targets. Subsequently, in Step 2, the attacker

uses Prime+Probe to monitor each of these possible cache

sets to identify the actual target cache sets.

The number of eviction sets that the attacker needs to

build and monitor depends on how much information about

the target cache sets the attacker has. If the attacker knows

the page offset of a target cache set, they only need to build

eviction sets for cache sets corresponding to that page offset

and monitor such sets [56, 63]. We refer to this scenario as

PageOffset. Conversely, if the attacker has no information

about the target sets, they must construct eviction sets for

all cache sets in the system and monitor them [56, 63]. We

refer to this scenario asWholeSys. Considering the standard

4 kB page size and 64 B cache line size, the attacker in the

WholeSys scenario needs to build and monitor 64× as many

eviction sets as in the PageOffset scenario. For a 28-slice

Skylake-SP CPU, the attacker needs to build 𝑈𝐿𝐿𝐶 = 896

eviction sets for the LLC sets at a give page offset and𝑈𝐿𝐿𝐶 ×
64 = 57,344 eviction sets for all LLC sets in the system.

2.2.3 Bulk Eviction Set Construction. The process of

constructing eviction sets for the PageOffset or WholeSys

scenarios is based on the procedure to build a single evic-

tion set. Because one can construct eviction sets for the

WholeSys scenario by repeating the process for the Page-

Offset scenario at each possible page offset, we only explain

the generation of eviction sets for the PageOffset scenario.

First, we build a candidate set containing addresses with

the target page offset. The candidate set needs to contain

enough congruent addresses for any cache set at that page
offset. Second, we pick and remove one address from the

candidate set and use it as the target address𝑇𝑎 . Third, we use

either of the address pruning algorithms in Section 2.2.1 to

build an eviction set for the cache set to which𝑇𝑎 maps. The

constructed eviction set is removed from the candidate set

and saved to a list 𝐿 containing all the eviction sets that have

been built so far. Fourth, we pick and remove another address

𝐴 from the reduced candidate set. If 𝐴 cannot be evicted by

any eviction set in 𝐿, we use 𝐴 as the target address 𝑇𝑎 and

proceed to the third step to construct a new eviction set;

otherwise, we discard 𝐴 and repeat the fourth step. We stop

when either we run out of candidate addresses or enough

eviction sets have been built.

2.3 Non-Inclusive LLC in Intel Server CPUs

Beginning with the Skylake-SP microarchitecture [84], Intel

adopted a non-inclusive LLC design on their server platforms.

Under this design, cache lines in private caches may or may

not exist in the LLC. The Snoop Filter (SF) [84] tracks the

ownership of cache lines present only in private caches,

serving as a coherence directory for such cache lines. Similar

to the LLC, the SF is shared among cores and sliced. The SF

has the same number of sets, number of slices, and slice hash

function as the LLC. Therefore, if two addresses map to the

same LLC set, they also map to the same SF set.

The interactions among private caches, SF, and LLC are

complex and undocumented. Based on prior work [102] and

our reverse engineering, we provide a brief overview of these

interactions, acknowledging that our descriptions may not

be entirely accurate or exhaustive.

Lines that are in state Exclusive (E) orModified (M) in

one of the private caches are tracked by the SF; we call these

lines private. Lines that are in state Shared (S) in at least one

of the private caches are tracked by the LLC (and, therefore,

are also cached in the LLC); we call these lines shared.
When an SF entry is evicted, the corresponding line in

the private cache is also evicted. The evicted line may be

inserted into the LLC depending on a reuse predictor [40, 82].

When a line cached in the LLC needs to transition to state E

or M due to an access, it is removed from the LLC and an SF
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Table 2. Parameters of the Skylake-SP cache hierarchy.

Structure Parameters

L1 Data/Instruction: 32 kB, 8 ways, 64 sets, 64 B line

L2 1MB, 16 ways, 1,024 sets, non-inclusive to L1

LLC Slice 1.375MB, 11 ways, 2,048 sets, non-inclusive to L1/L2

SF Slice 12 ways, 2,048 sets

Num.

Slices

Up to 28 slices. A 28-slice LLC and SF is the most

common configuration in Cloud Run datacenters

entry is allocated to track it. When a private line transitions

to state S, it is inserted into the LLC, and its SF entry is freed.

2.4 Function-as-a-Service (FaaS) Platform

Function-as-a-Service (FaaS) [7, 8, 19] is a popular cloud

computing paradigm. The basic unit of execution is a func-

tion, which executes in an ephemeral, stateless container or

micro virtual machine created and scheduled on demand in

an event-driven manner. Applications are then composed of

multiple functions that communicate with each other. Users

upload their functions and the cloud provider supplies all the

libraries, runtime environment, and system services needed

to run them. The FaaS platform orchestrator automatically

adjusts the number of container instances to match the func-

tion invocation demand. These instances often have a short

lifetime [4, 9, 20]. This design allows the concurrent execu-

tion of many instances on a single physical host, improving

hardware utilization.

In this paper, we use the FaaS Google Cloud Run plat-

form [19]. In our experiments, we find that the CPU microar-

chitecture used in Cloud Run datacenters is dominated by

Intel Skylake-SP and Cascade Lake-SP. Since these two mi-

croarchitectures have similar cache hierarchies, we focus our

discussion on Skylake-SP. Table 2 lists the key parameters

of Skylake-SP’s cache hierarchy.

3 Threat Model

In this paper, we assume an attacker who aims to exfiltrate

sensitive information from a victim containerized service

running on a public FaaS platform such as Cloud Run [19]

through LLC side channels. In our prior work [111], we

have demonstrated how an attacker can co-locate with a

target victim container on Cloud Run. If the victim runs

container instances on multiple hosts, our techniques can

co-locate attacker containers with a large portion of the

victim instances. Therefore, we assume the co-location step

is completed and focus on Steps 1–3 from Table 1.

We assume that the attacker is an unprivileged user of

a FaaS platform. The attacker’s interaction with the FaaS

platform is limited to the standard interfaces that are avail-

able to all platform users. Using these interfaces, the attacker

can deploy services that contain attacker-controlled binaries.

Finally, we assume that the attacker can trigger the victim’s

execution by sending requests to the victim service, either

directly or through interaction with a public web application

that the victim service is part of.

Since cloud vendors typically prevent different users from

simultaneously using the same physical core via Simultane-

ous Multithreading (SMT) [3, 50], the attacker must perform

a cross-core cache attack. Similar to prior work [71, 102] that

targets Intel Skylake-SP, we create eviction sets for the SF

and monitor the SF for the victim’s accesses. Note that an

SF eviction set is also an LLC eviction set, as the SF and LLC

share the same set mapping and the SF has more ways.

Lastly, we found that user containers on Cloud Run are

unable to allocate huge pages. Therefore, we assume that

the attacker can only rely on the standard 4 kB pages to

construct eviction sets. This assumption is consistent with

other restricted execution environments [31, 63, 78, 90] and

places fewer requirements on the attacker’s capability.

4 Existing Eviction Sets Fail in the Cloud

In this section, we show that existing algorithms to construct

eviction sets fail in the cloud. This is because of the noise in

the environment and the reduced time window available to

construct the eviction sets. In the following, we first examine

the resilience to environmental noise of a core primitive

used by all address pruning algorithms (Section 4.1). Then,

we evaluate the success rate and execution time of the two

state-of-the-art address pruning algorithms on Cloud Run

(Section 4.2), and investigate the reasons why they fall short

in the cloud (Section 4.3).

4.1 TestEviction Primitive & Its Noise Susceptibility

All the address pruning algorithms require a primitive that

tests whether a target cache line is evicted from the target

cache after a set of candidate addresses are accessed [56, 73,

90, 102]. We refer to this generic primitive as 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.

Specifically, group testing uses 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 to prune away

non-congruent addresses, while Prime+Scope employs it to

identify congruent addresses.

Due to environmental noise,𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 can return false-
positive results—i.e., the target cache line is evicted by ac-

cesses from other tenants and not by the accesses to the

candidate addresses. When this occurs in group testing, the

algorithm may discard a group of addresses with congruent

addresses, falsely believing that the remaining addresses con-

tain enough congruent addresses. Similarly, Prime+Scope

can misidentify a non-congruent address as a congruent one,

incorrectly including it in the eviction set. In both cases, the

algorithms may fail to construct an eviction set.

In general, the longer the execution time of𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 is,

the more susceptible it becomes to noise, due to the increased

likelihood of the target cache set being accessed by other

tenants during its execution. Thus, the execution time of

𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 not only affects the end-to-end execution time

of the algorithm, but also the algorithm’s resilience to noise.

Prior work [90] that uses the group testing algorithm im-

plements𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 with linked-list traversal [91]. As this
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implementation serializes memory accesses to candidate ad-

dresses, we refer to this type of implementation as sequential
TestEviction. Prime+Scope also uses sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛,

as it tests whether a target line is still cached after each ac-

cess to a candidate address. Since sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛

does not exploit memory-level parallelism (MLP), it has a

long execution time.

In ourwork, we find that overlapping accesses to candidate

addresses to exploit MLP can significantly reduce the execu-

tion time of 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. We refer to this implementation

as parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. It is based on a pattern proposed by

Gruss et al. [31], and our implementation can be found on-

line [109]. However, as will be shown in Sections 4.2 and 4.3,

even though parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 is significantly faster than

sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛, it alone is not enough to overcome

the noise in the cloud. In the rest of this paper, we use par-

allel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 in all algorithms except for Prime+Scope,

which is incompatible with parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 due to its

algorithm design.

4.2 Noise Resilience of Existing Algorithms

In this section, we implement both the group testing and

Prime+Scope algorithms for Skylake-SP’s SF. We then evalu-

ate their success rates and execution times in a local envi-

ronment with minimal noise, as well as in the Cloud Run

environment, which features a significant level of environ-

mental noise from other tenants.

Implementation. Following prior work that builds SF evic-

tion sets [71, 102], we first construct a minimal LLC eviction

set comprising 11 congruent addresses, and then expand

it to an SF eviction set by finding one additional congru-

ent address. To insert cache lines into the LLC, we use a

helper thread running on a different physical core that re-

peats the accesses made by the main thread. These repeated

accesses turn the state of the cache lines to S, and thus

cause the lines to be stored in the LLC (Section 2.3). Similar

techniques are used in prior work [71, 102]. Finally, as per

Section 4.1, our group testing implementation uses parallel

𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛, while our Prime+Scope implementation uses

sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.

To ensure a fair comparison among algorithms, we re-

implement group testing and Prime+Scope using the same

data structures to store candidate sets and eviction sets, and

the same primitives to test whether a set of addresses is an

eviction set. We call these algorithms Gt and Ps, respectively.

In addition, we also implement optimized versions of these

algorithms for Skylake-SP. Details of these optimizations are

presented in the extended version of this paper [112]. We

call these optimized algorithms GtOp and PsOp.

Experiment setup. We evaluate these algorithms in both a

cloud setup and a local setup.

Cloud setup.We deploy our attacker service to the us-central1
data center, where we observe the largest Cloud Run clus-

ter. Since our setup requires a concurrently running helper

thread, each attacker instance requests 2 physical cores. In

us-central1, the predominant CPU model used by Cloud Run

is the Intel Xeon Platinum 8173M, which is a Skylake-SP

processor with 28 LLC/SF slices.

During each experiment, we launch 300 attacker instances

and retain only one per host. We then use each algorithm

to build SF eviction sets for 50 random cache sets. To mea-

sure the effects of environmental noise fluctuations due to

computation demand changes, we repeat our experiments

for five days and at four different periods each day, namely,

morning (9–11am), afternoon (3–5pm), evening (8–10pm),

and early morning (3–5am). Altogether, we conducted 1,767

experiments on Cloud Run, totaling 88,350 eviction set con-

structions for each algorithm.

Local setup. Our local setup uses a Skylake-SP processor with

the Intel Xeon Gold 6152, which has 22 LLC/SF slices. During

the experiment, the system operates with minimal activity

beyond the running attacker container instance. We employ

each algorithm to construct 1,000 SF eviction sets.

Algorithms. For each SF eviction set, we allow each algorithm

to make at most 10 construction attempts. If the algorithm

fails these many times or it takes more than 1,000ms to

complete, we declare its failure. For group testing, which

uses backtracking to recover from erroneous 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛

results, we permit at most 20 backtracks per attempt.

In our experiments, we need to start by generating a set

of candidate addresses for a given page offset. Empirically,

we find that a set with 3𝑈𝑊 candidate addresses is enough

for Skylake-SP’s LLC/SF, where 𝑈 and𝑊 are the cache un-

certainty (Section 2.2.1) and associativity, respectively.

Results. Table 3 shows the effectiveness of the state-of-the-

art algorithms to construct an eviction set for SF in differ-

ent environments: quiescent local, Cloud Run, and Cloud

Run from 3am to 5am, which are typically considered “quiet

hours”. The metrics shown are the success rate, average

execution time, standard deviation of execution time, and

median execution time. The success rate is the probability of

successfully constructing an SF eviction set. The execution

time measures the real-world time that it takes to reduce a

candidate set to an LLC eviction set and then extend it with

one additional congruent address to form an SF eviction set.

We see that all algorithms achieve very high success rates

and good performance in the quiescent local environment.

However, on Cloud Run, where there is substantial environ-

mental noise from other tenants, all algorithms suffer sig-

nificant degradation in both success rate and performance.

Moreover, we do not observe significant variations in suc-

cess rate or execution time across different periods of a day,

including the 3am to 5am quiet hours. We believe this could

be due to certain server consolidation mechanisms that ad-

just the number of active hosts based on demand [11, 12, 49],

leading to a relatively constant load level on active hosts

throughout the day.
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Table 3. Effectiveness of the state-of-the-art address pruning

algorithms in different environments. The metrics shown

are: success rate, average execution time, standard deviation

of execution time, and median execution time.

Env. Metrics Gt GtOp Ps PsOp

Quiescent

Local

Succ. Rate 97.0% 98.8% 98.5% 98.2%

Avg. Time 32.9ms 21.1ms 55.9ms 54.9ms

Stddev Time 72ms 35ms 166ms 156ms

Med. Time 18.5ms 13.7ms 23.8ms 21.7ms

Cloud

Run

Succ. Rate 39.4% 56.0% 3.2% 6.9%

Avg. Time 714ms 512ms 580ms 572ms

Stddev Time 476ms 457ms 329ms 331ms

Med. Time 1,015ms 384ms 504ms 495ms

Cloud

Run

(3-5am)

Succ. Rate 41.4% 57.2% 3.7% 7.6%

Avg. Time 693ms 499ms 581ms 576ms

Stddev Time 482ms 456ms 327ms 332ms

Med. Time 1,009ms 350ms 509ms 502ms

Implications. As discussed in Section 2.2.2, an unprivileged

attacker needs to construct eviction sets for all SF sets at a

given page offset (PageOffset) or in the system (WholeSys).

We estimate the time to construct many eviction sets as

𝑛𝑠𝑒𝑡𝑠 × 𝑡𝑎𝑣𝑔/𝑆𝑅, where 𝑛𝑠𝑒𝑡𝑠 is the number of eviction sets we

need to build, 𝑡𝑎𝑣𝑔 is the average execution time of attempting

to construct one eviction set, and 𝑆𝑅 is the success rate.

Similar metrics are also used in prior work [81].

For the Skylake-SP processor that we are targeting, the

attacker needs to build 896 and 57,344 SF eviction sets in

the PageOffset and WholeSys scenarios respectively (Sec-

tion 2.2.2). Hence, on Cloud Run, GtOp, the fastest and most

noise-resilient of the evaluated algorithms, would take 13.7

minutes and 14.6 hours to construct eviction sets required

in the PageOffset and WholeSys scenarios, respectively.

We performed two additional small-scale experiments to

validate our estimation. In the first experiment, which is

conducted on 95 hosts, GtOp attempts to construct the 896

eviction sets required in the PageOffset scenario. GtOp

takes, on average, 9.9 minutes to complete the task, and it

only succeeds in 37.3% of the sets. In the second experiment,

which is conducted on 69 hosts, GtOp tries to construct the

57,344 eviction sets required in theWholeSys scenario. Due

to the timeout constraint of Cloud Run [21], we can only run

GtOp for one hour and thus report the number of eviction

sets it constructs under the constraint. Our best outcome is

constructing 3,741 eviction sets in one hour, with an average

number of 1,074 sets in one hour. This means that building

eviction sets for the system’s 57,344 SF sets would take GtOp

over 57,344/3,741 ≈ 15 hours even in the best case.

This performance is unsatisfactory for a practical attack

on FaaS platforms for several reasons. First, on some popular

FaaS platforms [7, 8], the attacker can only execute for 10 to

15 minutes before timeout [4, 9]. Even on a more permissive

platform like Cloud Run, the maximum timeout is just one

hour [21]. After a timeout, the attacker might not reconnect
to the same instance [21], thus losing the attack progress.

Second, container instances usually have a short lifetime

before being terminated [35, 93]. Hence, the long eviction set

construction time means that the co-located victim instance

may get terminated before eviction sets are ready. Finally,

as FaaS platforms charge customers by the CPU time, the

long execution time can cause significant financial cost to the

attacker. This is especially the case if the attacker is launching

many attacker instances on different hosts to increase the

chance of a successful attack.

4.3 Explaining the Results

Compared to a quiescent local environment, we find that

the cloud environment has a drastically higher rate of LLC

accesses made by other tenants, and that 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛’s ex-

ecution is slower. These two factors contribute to why the

state-of-the-art algorithms are ineffective in a cloud environ-

ment. Our conclusion is based on the following two experi-

ments. To ensure meaningful comparisons, both experiments

are conducted using the container instances of Section 4.2.

Experiment 1: LLC set access frequency. In this exper-

iment, we measure how frequently an LLC set is accessed

by background activities, such as system processes and pro-

cesses of other tenants. The reason why we focus on the

access frequency of the LLC instead of the SF is because

address pruning algorithms build eviction sets in the LLC

and then expand them to SF eviction sets (Section 4.2).

During the experiment, we first construct an eviction set

for a randomly chosen LLC set. Then, we detect background

LLC accesses with Prime+Probe [64]. We record the times-

tamp of each LLC access. Each experiment trial collects the

timestamps of 1,000 back-to-back LLC accesses. On Cloud

Run, we perform 50 trials per host (88,350 trials in total). In

the local environment, we carry out 1,000 trials.

Experiment 2: TestEviction execution duration. In this

experiment, we measure the execution duration of both the

parallel and sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 when testing varying

numbers of candidate addresses. We perform the measure-

ment in both the Cloud Run and local environments. For

each host and candidate set size, we measure 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛’s

execution time for 100 times after 10 warm-ups.

Results. Figure 2 shows the cumulative distribution func-

tion (CDF) of the time between LLC accesses by background

activity to a randomly chosen LLC set in both environments.

On Cloud Run, the average LLC access rate is 11.5 accesses

per millisecond per set. In the local environment with mini-

mal noise, the average access rate is merely 0.29 accesses per

millisecond per set. Figure 3 shows the execution time of the

parallel and sequential𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛, for varying numbers of

candidate addresses on Cloud Run. As the execution times of

𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 in the local environment follow similar trends,

we omit them in the plot. It can shown that, on average, the
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Figure 3. Different𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛’s execution times on Cloud

Run under various number of candidate addresses.

execution times of the sequential and parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛

are 26.9% and 42.1% lower in the local environment compared

to Cloud Run, respectively.

These results explain why existing address pruning algo-

rithms show unsatisfactory effectiveness on Cloud Run. For

Prime+Scope, when using sequential𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 to identify

the first congruent address, it is expected to test 11𝑈𝐿𝐿𝐶 can-

didate addresses. This takes approximately 4.6ms on average.

However, during this time, the target LLC set is expected

to experience 53.0 background LLC accesses. Consequently,

Prime+Scope’s 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 very likely reports erroneous

results under this level of noise.

As for group testing, its parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 executes an

order of magnitude faster than the sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.

For example, it takes only 134.8 µs to test 11𝑈𝐿𝐿𝐶 candidates.

Given the background LLC access rate, the probability of the

set not being accessed during the 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 execution is

about 18.4%. This permits the parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 a reason-

able chance to complete without experiencing interference

from background accesses. In combination with the back-

tracking mechanism [90], group testing has a substantially

higher probability of success compared to Prime+Scope on

Cloud Run. Still, both Gt and GtOp experience a large num-

ber of backtracks due to erroneous 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 results and

are drastically slowed down on Cloud Run. For example, the

optimized GtOp performs an average number of 32.2 back-

tracks per eviction set on Cloud Run, while it only needs 4.0

backtracks on average in the local environment.

5 Constructing Eviction Sets in the Cloud

Based on the insights from Section 4, we propose two tech-

niques that enable fast (and therefore also noise-resilient),

eviction set construction in the cloud: L2-driven candidate
address filtering (Section 5.1) and a Binary Search-based algo-
rithm for address pruning (Section 5.2).

5.1 L2-driven Candidate Address Filtering

To speed-up the eviction set construction, we propose to

reduce the candidate set size with an algorithm-agnostic

optimization that we call candidate address filtering. Our
insight is that the L2 set index bits are typically a subset of

the LLC/SF set index bits. For example, Skylake-SP uses PA

bits 15-6 as the L2 set index and PA bits 16-6 as the LLC/SF

set index (Figure 1). Hence, if addresses 𝐴 and 𝐵 are not

congruent in the L2, then𝐴 and 𝐵 have different PA bits 15-6

and, therefore, they must not be congruent in the LLC/SF.

Based on this insight, we introduce a new candidate filter-
ing step after candidate set construction and before address

pruning. Assume that we want to construct an eviction set

for an LLC/SF set to which an attacker-accessible address 𝑇𝑎
maps. To perform the candidate filtering, we first construct

an L2 eviction set for 𝑇𝑎 . Then, using the L2 eviction set, we

test whether it can evict each address from the candidate set.

If a candidate address 𝐴 cannot be evicted by the L2 eviction

set, then it implies that 𝐴 and 𝑇𝑎 are not congruent in either

the L2 or the LLC/SF. Consequently, 𝐴 is removed from the

candidate set. After candidate filtering, the candidate set

contains only addresses that are congruent with𝑇𝑎 in the L2.

These filtered addresses are passed to the address pruning

algorithm to find a minimal LLC/SF eviction set.

As Skylake-SP has an L2 uncertainty of 𝑈𝐿2 = 16, only

about 1/16 of the candidate addresses are congruent with 𝑇𝑎
in L2. Therefore, the size of the filtered candidate set is only

about 1/16 of the original set size. On a common 28-slice

Skylake-SP CPU, we expect to find one congruent address

every 𝑈𝐿𝐿𝐶 = 896 candidates in the candidate set before

filtering. With candidate filtering, we now expect to find one

congruent address every 896/16 = 56 candidates.

Since the candidate set is universally used by different

address pruning algorithms, including both group testing

and Prime+Scope, our candidate filtering is a generic opti-

mization. Moreover, in modern processors, the number of

L2 sets is typically smaller than the number of LLC sets in

one LLC slice. Hence, the property that the L2 set index

bits are a subset of the LLC set index bits generally holds

for other processors as well, Therefore, the candidate fil-

tering optimization also applies to them. Lastly, the idea of

candidate filtering can be applied to a more restricted envi-

ronment where the attacker cannot even control the page

offset bits [90]. In such an environment, the attacker can

hierarchically construct L1 and L2 eviction sets to gradually

filter candidates for the next lower cache level.

5.2 Using Binary Search for Address Pruning

To further speed-up eviction set construction in the cloud,

we propose a new address pruning algorithm based on binary

search. Our algorithm uses parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.
Algorithm design. Given a list of candidate addresses, we

test whether the first 𝑛 addresses can evict a target address

𝑇𝑎 . For a𝑊 -way cache, increasing 𝑛 from zero will result in
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1 // T_a: target address

2 // addrs: an array of candidate addresses

3 // N: size of the addrs array (N >= W)

4 size_t LB, UB = N;

5 for (size_t i = 1; i <= W; i++) {

6 LB = i - 1;

7 while (UB - LB != 1) {

8 n = (LB + UB) / 2;

9 if (TestEviction(T_a, addrs, n))

10 UB = n; // T_a can be evicted

11 else
12 LB = n; // T_a cannot be evicted

13 }

14 size_t tau_i = UB;

15 swap(addrs[i], addrs[tau_i]);

16 } // addrs[1]~addrs[W] form an eviction set

Figure 4. Pseudo code of our proposed algorithm. All ar-

ray indexes start from 1. Parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛(𝑇𝑎, 𝑎𝑑𝑑𝑟𝑠, 𝑛)
returns a boolean value that indicates whether the first 𝑛

candidate addresses from array 𝑎𝑑𝑑𝑟𝑠 can evict the target𝑇𝑎 .

a negative test outcome until the first 𝑛 addresses include𝑊

congruent addresses. We define the tipping point, denoted
by 𝜏 , as the smallest 𝑛 for which the first 𝑛 addresses evict

𝑇𝑎 . Therefore, 𝜏 is the index of the𝑊 -th congruent address

in the list, assuming that the indexation begins from 1. For a

given 𝑛, if the first 𝑛 addresses evict 𝑇𝑎 , it means that 𝑛 ≥ 𝜏 ;

otherwise, 𝑛 < 𝜏 . Our main idea is to use binary search

to efficiently determine 𝜏 and thus identify one congruent

address. Then, we exclude the congruent address from any

future search, and repeat the binary search process until𝑊

different congruent addresses are found.

Figure 4 shows the pseudo code of the algorithm. It takes

as inputs a target address 𝑇𝑎 , an array of addresses 𝑎𝑑𝑑𝑟𝑠

representing the candidate set, and the array size 𝑁 . The

array 𝑎𝑑𝑑𝑟𝑠 should contain at least𝑊 congruent addresses,

and thus 𝑁 ≥𝑊 . The algorithm iteratively finds𝑊 congru-

ent addresses by finding the tipping point at each iteration

(Lines 5–16 in Figure 4). Within each iteration, the algorithm

tests in a loop if the first 𝑛 = ⌊(LB + UB)/2⌋ addresses from
𝑎𝑑𝑑𝑟𝑠 can evict𝑇𝑎 (Line 9). The variables LB and𝑈𝐵 are then

updated in a manner that LB always represents the largest 𝑛

such that the first 𝑛 addresses cannot evict𝑇𝑎 and UB always

represents the smallest 𝑛 such that the first 𝑛 addresses can
evict 𝑇𝑎 . Therefore, when UB = LB + 1, UB is the tipping

point of iteration 𝑖 , denoted by 𝜏𝑖 . Consequently, the 𝜏𝑖-th

address of the array is a congruent address. The algorithm

then swaps the just-found congruent address with the 𝑖-th

address in 𝑎𝑑𝑑𝑟𝑠 and proceeds to the next iteration (Line 15).

Before the binary search in the next iteration starts, LB
is reset to 𝑖 − 1 (Line 6), as the first 𝑖 − 1 addresses are the

congruent addresses found in previous iterations and are

thus excluded from the search. In contrast, UB needs not to
be reset to 𝑁 , as the first UB addresses always contain𝑊

congruent addresses due to the swapping. Finally, after𝑊
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Figure 5. Illustration of our proposed binary search-based

algorithm (assuming𝑊 = 2). Blocks with shaded pattern

represent congruent candidate addresses.

iterations, the first𝑊 addresses in 𝑎𝑑𝑑𝑟𝑠 form a minimal

eviction set for 𝑇𝑎 (Line 16).

Example. Figure 5 demonstrates the algorithm with a nine-

address candidate set (𝐶1,𝐶2, . . . ,𝐶9) and a target cache with

associativity𝑊 = 2. Initially, we set 𝑖 = 1, LB = 0, UB = 𝑁 =

9, and𝑛 = ⌊(UB+LB)/2⌋ = 4 (Step 1 ). Because the first𝑛 = 4

addresses cannot evict 𝑇𝑎 , we set LB = 𝑛 = 4 and update

𝑛 to ⌊(UB + LB)/2⌋ = 6 (Step 2 ). With the updated 𝑛, the

first 𝑛 = 6 addresses now can evict 𝑇𝑎 , so we set UB = 𝑛 = 6

and update 𝑛 = 5 (Step 3 ). This process is repeated until

UB = LB + 1 = 6 (Step 4 ). At this point, 𝐶6 is found to

be a congruent address, which is saved to the front of the

list by swapping it with 𝐶1. Then, we increment 𝑖 to 2, set

LB = 𝑖 − 1 = 1 without changing UB (Step 5 ), and repeat

the binary search (Steps 5 – 7 ). The algorithm finishes once

𝑊 congruent addresses are found (Step 8 ), which form a

minimal eviction set for 𝑇𝑎 .

Backtrackingmechanism.When the𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 returns

a false-positive result due to environmental noise, our algo-

rithm can incorrectly set UB to a value smaller than 𝜏 . As

a result, the binary search may incorrectly identify a non-

congruent address as a congruent one. This erroneous state

is detected if the first UB addresses cannot evict 𝑇𝑎 after the

binary search for the iteration finishes. To recover from this

state, we gradually increase UB with a large stride until the

first UB addresses can evict 𝑇𝑎 and restart the binary search.

Comparison to existing algorithms. Unlike Prime+Scope,

our algorithm uses parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. As discussed in
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Section 4.3, parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 is at least an order of mag-

nitude faster than sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. Therefore, our

algorithm is faster than Prime+Scope.

Compared to group testing, both our algorithm and group

testing can use parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. Assume that we use the

number of memory accesses as a proxy for execution time.

Using our algorithm, it takes𝑂 (log𝑁 ) parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛
executions to find a tipping point, where 𝑁 is the candi-

date set size. Since each parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 needs to make

𝑂 (𝑁 ) memory accesses, it takes𝑂 (𝑁 log𝑁 ) accesses to find
one congruent address. As we need to find𝑊 congruent ad-

dresses, the end-to-end execution requires𝑂 (𝑊𝑁 log𝑁 ) ac-
cesses. In contrast, group testing requires 𝑂 (𝑊 2𝑁 ) accesses.
Therefore, whether group testing or our algorithm makes

fewer accesses, and consequently executes faster, depends

on the specific values of𝑊 and log𝑁 .

As an intuitive comparison, the ratio of the number of

accesses made by group testing over our algorithm is esti-

mated by𝑂 (𝑊 /log𝑁 ). Since we use 𝑁 = 3𝑈𝑊 (Section 4.2),

we rewrite the ratio as 𝑂 (𝑊 /log (𝑈𝑊 )). This suggests that
in caches with high associativity (i.e., a large𝑊 ), group test-

ing tends to make more accesses than our algorithm. This is

supported by our experiments in Section 5.3.

5.3 Evaluating Our Optimizations

We evaluate group testing, Prime+Scope, and our binary

search-based algorithm with candidate filtering in both the

Cloud Run and local environments. We use the same method-

ology as the experiment in Section 4.2, except for reducing

the time limit of constructing one eviction set to 100ms (be-

cause of candidate filtering). Each algorithm is evaluated in

three scenarios: (1) SingleSet, where we construct a single

eviction set for a randomly chosen SF set; (2) PageOffset,

where we construct eviction sets for all SF sets at a randomly

chosen page offset; and (3)WholeSys, where we construct

eviction sets for all SF sets in the system. Our experiments

include 88,350 and 1,000 measurements per algorithm in the

cloud and local environments, respectively, in SingleSet;

8,835 and 100 in PageOffset; and 1,767 and 20 inWholeSys.

Results. Table 4 lists the success rate and execution time of

each algorithm under different scenarios in both the Cloud

Run and local environments. The execution time measures

both candidate filtering and address pruning. As we find that

Ps and PsOp have similar success rates and execution times

after applying candidate filtering, Table 4 only shows the

one with the shortest average execution time, and calls it

PsBst. We call our binary search-based algorithm BinS.

The SingleSet scenario in Table 4 is directly comparable

to the scenario in Table 3. Table 4 shows the effectiveness of

candidate filtering on Cloud Run, as it leads to significantly

shortened execution times. For example, the average execu-

tion time of GtOp is reduced from 512ms to 27.2ms. The

resulting success rate also increases substantially. Indeed,

for GtOp, it goes from 56.0% to 97.7%.

Recall that the average execution time comprises both

candidate filtering and addresses pruning. In the SingleSet

scenario, it can be shown that candidate filtering on Cloud

Run takes on average 22.3ms, which dominates the execu-

tion time. As a result, the average execution times are similar

across all algorithms. As will be shown in Section 5.3.1, the

portion of the execution time spent on candidate filtering

drastically decreases when building numerous eviction sets

in the PageOffset andWholeSys scenarios.

Next, consider PageOffset. All the algorithms experience

increases in average execution times as they go from the

local to the Cloud Run environments. Comparing group

testing to our algorithm on Cloud Run, we see that Gt and

GtOp take 92% and 38% more time to build eviction sets

on average, as we find that Gt and GtOp make 162% and

52% more memory accesses than BinS. As for PsBst, it takes

on average 57% more time than BinS, due to its use of the

sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.

The results forWholeSys are qualitatively similar to Pa-

geOffset, except for larger drops in success rates as we go

from the local to the Cloud Run environments. Still, while

the average success rates of Gt, GtOp, PsBst, and BinS on

Cloud Run are 88.1%, 90.5%, 91.7%, and 92.6%, respectively,

the medians are 96.7%, 98.5%, 99.4%, and 99.1%, respectively.

To summarize, the combination of candidate filtering and

our binary search-based algorithm offers significant per-

formance improvements over the well-optimized state-of-

the-art algorithms. On Cloud Run, they reduce the time to

construct eviction sets for all SF sets in the system from an

expected duration of 14.6 hours (Section 4.2) to a mere 2.4

minutes (last column of Table 4), with a median success rate

of 99.1%. These improvements make the LLC Prime+Probe

attack in the cloud feasible.

5.3.1 Overhead of Candidate Filtering. As indicated

before, it takes 22.3ms to complete one candidate filtering on

Cloud Run. This time includes constructing one L2 eviction

set and using it to filter candidates.While this time dominates

the execution time when constructing a single eviction set

(Section 5.3), the same filtered candidates can be reused to

construct many eviction sets for LLC/SF sets that are mapped

to the same L2 set. For example, in the 28-slice Skylake-SP

processor used in our Cloud Run evaluation, constructing

the 896 LLC/SF sets in the PageOffset scenario requires

only 16 candidate filtering executions, which takes 435ms

on average. This execution time makes up a small portion of

the total execution time in PageOffset (2.87 s in Table 4).

In the WholeSys scenario, a naive process would build

eviction sets for all 1,024 L2 sets and execute candidate fil-

tering 1,024 times. We optimize the process by exploiting

the following property of the L2: if addresses 𝐴 and 𝐵 are

congruent in L2, then 𝐴′ = 𝐴 + 𝛿 and 𝐵′ = 𝐵 + 𝛿 are also

congruent in L2—as long as the 𝛿 is small enough such that

𝐴 and 𝐴′
belong to the same page, and 𝐵 and 𝐵′

belong to

the same page [41, 56, 63].
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Table 4. Eviction set construction effectiveness of various algorithms under different configurations. The number of eviction

sets may vary between local and cloud because the experiments use machines with different number of slices.

Env. Metrics

SingleSet

# Ev sets: Local=1, Cloud=1

PageOffset

# Ev sets: Local=704, Cloud=896

WholeSys

# Ev sets: Local=45,056, Cloud=57,344

Gt GtOp PsBst BinS Gt GtOp PsBst BinS Gt GtOp PsBst BinS

Quiescent

Local

Succ. Rate 99.3% 99.5% 99.2% 99.9% 98.6% 99.2% 99.4% 99.5% 99.0% 99.1% 99.5% 99.5%

Avg. Time 15.2ms 14.7ms 14.7ms 14.1ms 1.95 s 1.48 s 3.02 s 1.04 s 103.6 s 79.6 s 175.0 s 50.1 s

Stddev Time 3.1ms 2.6ms 0.8ms 2.2ms 0.72 s 0.17 s 2.48 s 0.16 s 16.1 s 7.9 s 72.7 s 5.5 s

Med. Time 14.7ms 14.4ms 14.5ms 13.9ms 1.77 s 1.43 s 1.39 s 1.00 s 96.8 s 76.9 s 185.6 s 48.9 s

Cloud

Run

Succ. Rate 96.7% 97.7% 97.2% 98.1% 95.6% 97.4% 98.4% 98.0% 88.1% 90.5% 91.7% 92.6%

Avg. Time 28.8ms 27.2ms 33.2ms 26.6ms 5.51 s 3.95 s 4.51 s 2.87 s 301.1 s 212.6 s 244.4 s 142.4 s

Stddev Time 14.4ms 10.8ms 21.4ms 11.6ms 2.62 s 1.90 s 2.72 s 1.58 s 63.0 s 52.1 s 58.9 s 34.8 s

Med. Time 25.1ms 24.7ms 26.7ms 23.9ms 4.94 s 3.52 s 3.85 s 2.53 s 290.1 s 200.4 s 229.6 s 134.2 s

Exploiting this property, we first construct 16 eviction sets

for all L2 sets at page offset 0x0. Then, we use each eviction

set to generate a filtered candidate set at page offset 0x0.
Finally, we can derive a new filtered candidate set at page

offset 𝛿 by adding 𝛿 to each candidate address of the filtered

candidate set at page offset 0x0. As a result, the WholeSys

scenario requires only 16 L2 eviction set constructions and

candidate filtering executions. The time of completing can-

didate filtering (435ms) is negligible compared to the total

execution time in WholeSys (142.4 s in Table 4).

5.3.2 Other Intel Server Platforms and Target Caches.

As discussed in Section 5.2, group testing tends to incur a

higher execution overhead over our binary search-based al-

gorithm when the cache associativity increases. To illustrate

this trend, we measure the performance of eviction set con-

struction on Ice Lake-SP, which features caches with higher

associativity than in Skylake-SP. Specifically, Ice Lake-SP

has a 16-way SF and a 20-way L2 cache, whereas Skylake-SP

has a 12-way SF and a 16-way L2 cache.

Because we do not see Ice Lake-SP being used on Cloud

Run, wemeasure the performance on local quiescent Skylake-

SP and Ice Lake-SP machines. The Skylake-SP machine uti-

lized is the same as in prior experiments. The Ice Lake-SP

machine uses an Intel Xeon Gold 5320, which has 26 LLC/SF

slices. For each machine and algorithm, we measure the time

to construct a single SF or L2 eviction set 1000 times. Candi-

date filtering is enabled for SF eviction set construction, but

its time is not included in our measurements.

First, we consider constructing eviction sets for the SF.

Gt, GtOp, and BinS take, on average, 2.23ms, 1.77ms, and

1.17ms, respectively, to construct a single eviction set for

the 12-way SF of Skylake-SP. The same process takes Gt,

GtOp, and BinS on average 3.81ms, 3.07ms, and 1.68ms,

respectively, for the 16-way SF of Ice Lake-SP. As we go from

Skylake-SP to Ice Lake-SP, the ratioGt/BinS andGtOp/BinS

changes from 1.91 and 1.51 to 2.27 and 1.83, respectively.

Similarly, Gt, GtOp, and BinS take, on average, 2.49ms,

1.90ms, and 1.33ms, respectively, to construct a single evic-

tion set for the 16-way L2 of Skylake-SP. The same process

takes Gt, GtOp, and BinS on average 14.48ms, 8.16ms, and

2.28ms, respectively, for the 20-way L2 of Ice Lake-SP. As

we go from Skylake-SP to Ice Lake-SP, the ratio Gt/BinS

and GtOp/BinS changes from 1.87 and 1.43 to 6.35 and 3.58,

respectively.

6 Monitoring Memory Accesses &

Identifying Target Cache Sets

Eviction set construction is the first step of an end-to-end

LLC attack (Step 1 in Table 1). In this section, we improve the

remaining steps with two new techniques. First, Section 6.1

introduces Parallel Probing, which enables the monitoring

of victim memory accesses with high time resolution. This

technique optimizes Step 2 (identify target sets) and Step 3

(exfiltrate information) in Table 1 for the noisy cloud envi-

ronment. Second, Section 6.2 leverages Power Spectral Den-
sity [83] from signal processing to easily identify the victim’s

target cache set. This technique optimizes Step 2 in Table 1

for the noisy cloud environment.

6.1 Parallel Probing for Memory Access Monitoring

Given a cache set to monitor, the attacker can detect memory

accesses to that set with Prime+Probe (Section 2.1). It is vital

that both prime and probe latencies are short. A short probe

latency enables the attacker to monitor when accesses occurs

at a high time resolution [71]. A short prime latency allows

the attacker to quickly prepare the monitored cache set for

detecting the next access. In a noisy cloud environment,

where a cache set may be frequently accessed by processes

of other tenants, failure to prime the set in a timely manner

can increase the chance of missing the victim’s accesses.

To minimize the probe latency, Prime+Scope [71] primes

a specific line from the eviction set to become the eviction
candidate (EVC), which is the line to be evicted when a new

line needs to be inserted into the set. This method enables the

attacker to check only if the EVC remains cached. Further,

since the EVC can be cached in L1, the probe latency be-

comes minimal, leading to a high time resolution. However,

this comes at the cost of using a slower and more complex

priming pattern to prepare the replacement state [71], which

can reduce monitoring effectiveness in a noisy environment.
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Table 5. Prime and probe latencies of two Prime+Scope

strategies and parallel probing on Cloud Run. The host pro-

cessors’ frequency is 2GHz.

Strategy

Prime Latency

(mean ± std. deviation)

Probe Latency

(mean ± std. deviation)

PS-Flush 6,024 ± 990 cycles

94 ± 0.7 cycles
PS-Alt 2,777 ± 735 cycles

Parallel 1,121 ± 448 cycles 118 ± 0.7 cycles

Our solution. We discover that, due to the high memory-

level parallelism supported by modern processors, simply

probing with overlapped accesses all the𝑊 lines of a mini-

mal eviction set (Section 2.2) results in a probe latency only

slightly higher than that of Prime+Scope. The advantage of

this parallel probing method is that it allows us to prime the

cache set without preparing any replacement state. There-

fore, parallel probing works irrespective of the replacement

policy used by the target cache, which can be unknown or

quite complex [43, 74, 90, 98].

Evaluating Parallel Probing.We conduct a covert-channel

experiment similar to the one done by Purnal et al. [71]

to evaluate two different Prime+Scope strategies and our

parallel probing. In the experiment, we create a sender and

a receiver thread that agree on a target SF set. The sender

thread accesses the target set at a fixed time interval, while

the receiver thread uses Prime+Scope or parallel probing to

detect accesses to the target set. For a sender’s access issued

at time 𝑡 , if the receiver detects an access at time 𝑡 ′ ∈ (𝑡, 𝑡+𝜖),
where 𝜖 is an error bound, we say that the sender’s access is

detected by the receiver. We use 𝜖 = 500 cycles (or 250 ns).

We conduct this experiment on Cloud Runwith varying ac-

cess intervals. In each experiment, the sender thread accesses

the target SF set 2,000 times. We measure the percentage of

the sender’s accesses that are detected by the receiver—i.e.,

the detection rate. We also collect the probe and prime laten-

cies and exclude outliers that are above 20,000 cycles, as an

interrupt or context switch likely occurred during the opera-

tion. The experiment is done on different hosts on different

days and at different times of day. We repeat the experiment

10 times on each host, totaling 4,070 measurements.

For Prime+Scope, we evaluate two prime strategies dis-

cussed by Purnal et al. [71]. The first strategy (PS-Flush)

is to load, flush, and sequentially reload the eviction set.

The second strategy (PS-Alt) is to perform an alternating

pointer-chase using two eviction sets. More details of these

strategies is found in [71]. For our parallel probing technique

(Parallel), we use a prime strategy that simply traverses

the eviction set 12 times with overlapped accesses.

Table 5 lists the prime and probe latencies of each strategy.

The table reveals that the average probe latency of Paral-

lel is only 24 cycles higher than that of Prime+Scope, yet

Parallel exhibits a substantially lower prime latency.

The benefit of this reduced prime latency is depicted in

Figure 6, which shows the average detection rate for different
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Figure 6. Detection rate of each monitoring strategy with

various access interval. The x-axis employs a logarithmic

scale. The error bars represent the standard deviations.

access intervals. With a 2k-cycle access interval, Parallel

achieves an average detection rate of 84.1%, while PS-Flush

and PS-Alt reach average detection rates of 15.4% and 6.0%,

respectively. The low detection rates of PS-Flush and PS-

Alt are primarily due to their long prime latencies.

Even when the access interval is sufficiently long for all

strategies to complete priming, Parallel still maintains the

highest detection rate. With a 100k-cycle access interval,

Parallel, PS-Flush, and PS-Alt attain average detection

rates of 91.1%, 82.1%, and 36.9%, respectively. To understand

why, we inspected a random subset of the detected memory

access traces. In PS-Flush, we observe that missed detections

mainly result from noisy accesses made by other tenants to

the monitored cache set, occurring just before the sender’s

access. After the receiver detects the noisy access, it is unable

to finish priming before the sender accesses the set.

In PS-Alt, although the receiver initially detects the sender’s

accesses, it often later fails to prime the monitored line as

the EVC, leading to many missed detections. We believe this

might be due to the SF replacement states being altered by

background accesses, resulting in failing to prepare the EVC.

6.2 Power Spectral Density for Set Identification

To identify the target cache sets (Step 2 in Table 1), the at-

tacker can collect a short memory access trace from each

potential target cache set while the victim is executing. The
attacker then applies signal processing techniques to deter-

mine whether a given memory access trace has any charac-

teristic that resembles what is expected from a given target

cache set. Prior work has considered characteristics such

as the number of accesses in the trace or the access pat-

tern [41, 56]. These characteristics can be hard to identify in

the cloud due to the high level of environmental noise.

Our solution. Our insight is that a victim program’s ac-

cesses to the target cache set are often periodic in a way

that the attacker expects, while this is not the case for the

background accesses. Therefore, we propose to process the

access traces in the frequency domain, where it is easier

to spot the expected periodic patterns. Specifically, we esti-

mate the Power Spectral Density (PSD) [83] of each memory

access trace using Welch’s method [96]. PSD measures the

“strength” of the signal at different frequencies [83]. If the

access trace is collected from the target set where the vic-

tim makes periodic accesses, we will observe peaks in the
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Figure 7. The top plot shows traces of memory access to the

target SF set (top trace) and the non-target SF set (bottom

trace) collected on Cloud Run. The two bottom plots show

the power spectral density of the two traces.

trace’s PSD around the expected victim-access frequencies.

If, instead, the trace is not collected from the target set, it

will have a PSD without the expected peaks.

Example. To demonstrate our proposal, we collect an access

trace from a target SF set of a victim program and another

trace from a non-target SF set, and compare the PSD of

both traces. In this example, the victim executes an ECDSA

implementation [62] that will be described in Section 7.1. In

this implementation, the victim processes each individual

secret bit in a loop. The victim accesses the target SF set when

an iteration starts and, if the secret bit being processed in the

iteration is zero, it also accesses the set in the midpoint of

the iteration. The execution of each iteration takes a mostly

fixed time duration of about 9,700 cycles on a 2GHz Skylake-

SP machine on Cloud Run. Because of the access that may

occur in the midpoint of an iteration, the victim’s accesses to

the target set have a period of about 4,850 cycles. Therefore,

we expect to observe a peak in the PSD at the frequency of

𝑓 = 2GHz/4,850 ≈ 0.41MHz.

The top plot of Figure 7 shows two 100 µs memory access

traces collected on a 2GHz Skylake-SP machine on Cloud

Run. The blue dots at the top are the observed accesses to

the target SF set; while the orange dots at the bottom are the

observed accesses to the non-target SF set. For both traces,

we see similar numbers of accesses: 50 accesses to the target

set and 48 to the non-target set. It is difficult to interpret

these two patterns.

The bottom plots show the PSD of the access traces col-

lected from the target set (left) and the non-target set (right).

In the PSD for the target set, we clearly see a peak at the base

frequency 𝑓 = 0.41MHz and at multiples of 𝑓 . In contrast, in

the PSD for the non-target set, we see no significant peaks

at the expected frequency.

7 Demonstrating an End-to-End Attack

In this section, we demonstrate the combination of our tech-

niques discussed in Sections 5 and 6 by mounting an end-to-

end, cross-tenant attack in Cloud Run. Our demonstration

uses a vulnerable implementation of Elliptic Curve Digital

Signature Algorithm (ECDSA) [44] from OpenSSL 1.0.1e [62]

for bit in k {
if (bit) {

MAdd(x1,z1,x2,z2); // MAdd1
MDouble(x2,z2); // MDouble1

} else {
MAdd(x2,z2,x1,z1); // MAdd0
MDouble(x1,z1); // MDouble0

}
// ...

}

(a) Simplified code snippet.

// ...
if (bit)

MAdd1
MDouble1

MAdd0
MDouble0

Y

①

②

③

(b) Memory layout.

Figure 8. Simplified vulnerable code snippet (left) and its

memory layout in VA space (right). Each thick vertical line

represents a cache line. The control-flow edge that exits the

loop is omitted in the right figure.

as an example victim. While this implementation is depre-

cated, we use it solely as a vehicle to illustrate our techniques.

7.1 Attack Outline

The vulnerable ECDSA implementation that we target uses

the Montgomery ladder technique [45] to compute on the

nonce 𝑘 , an ephemeral key that changes with each signing.

The attacker can derive the private key used for signing

by extracting some bits of 𝑘 across multiple signing opera-

tions [1, 17, 27, 37, 59, 61, 103]. Thus, the attacker’s goal is

to learn as many bits of 𝑘 as possible. Our demonstration

targets curve sect571r1, which uses a 571-bit nonce.

Similar to prior work [39, 56, 103], we assume the attacker

knows the memory layout of the library used by the victim.

This assumption generally holds, as victims often install and

use libraries whose binaries are publicly released. Moreover,

as we are targeting a victim web service (Section 3), we

assume the library is loaded once at the victim container

startup time and uses the same VA-PA mapping throughout

the container’s lifetime.

Figure 8a shows a simplified version of the Montgomery

ladder implementation [62] that we are targeting. The code

iterates through each bit of the nonce 𝑘 and calls functions

MAdd and MDoublewith different arguments depending on

the value of the bit. This implementation is resilient to end-

to-end timing, as it executes the same sequence of operations

regardless of the bit value. However, it has secret-dependent

control flow. Since each side of the branch resides on a dif-

ferent cache line, the program fetches different cache lines

based on the value of the nonce bit. As a result, the attacker

can infer each individual nonce bit by monitoring code fetch

accesses to these cache lines tracked by the SF.

Figure 8b shows the memory layout of the vulnerable

code snippet in VA space, compiled with the default build

options and static linkage. Each thick vertical line represents

a different cache line. Given this layout, one approach is to

monitor accesses to cache line 2 . Line 2 is used by the if
statement, which is executed at the beginning of an iteration.

As a result, the code fetch accesses made by the if statement

serve as a “clock” and mark the iteration boundaries.
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Figure 9. A snippet of memory accesses to the target SF

set collected on Cloud Run. Dots are detected accesses, and

crosses are the nonce bit 𝑘 values (1 or 0).

Cache line 2 is also utilized by the true direction of

the branch. When the control flow takes the true direction

and MAdd1 is executing, Prime+Probe will evict line 2 . As

the control flow returns from MAdd1 and is about to call

MDouble1, the program needs to fetch line 2 , creating

one access in the midpoint of the iteration. Then, while

MDouble1 is executing, Prime+Probe evicts cache line 2

again, triggering a code fetch access when returning from

MDouble1 and executing the if statement.

Therefore, we observe two accesses to line 2 per itera-

tion if the bit value is 1, and one access to line 2 if the bit

value is 0. It should be noted that, although line 2 slightly

overlaps with the beginning of the else block, we will not
observe an extra access if the bit value is 0. This is because

the overlapped region is executed immediately after the if
statement, and the interval is too brief to be detected.

In practice, whenwe collect a trace of thememory accesses

to the target SF set to which cache line 2 maps, we also

want to collect the ground truth of nonce bit 𝑘 and iteration

boundaries for validation purpose. This requires some slight

instrumentation of the binary, a practice also seen in prior

work [30, 108]. The instrumentation is purely for validation

purpose and it is not necessary for the attack. However, due

to the instrumentation, the layout of the code changes, and it

is easier to monitor the cache line corresponding to theelse
direction. The reasoning is similar to the explanation for line

2 , but we now observe the additional memory access at the

midpoint of an iteration when the bit value is 0, not 1.

We collect the trace of memory accesses to the target SF

set (using the techniques of Section 6), the ground truth of

nonce bit 𝑘 , and iteration boundaries on Cloud Run, while

the victim code is executing. Figure 9 shows a short snippet

of the trace that happens to contain no noisy accesses made

by other tenants. In the figure, thick dashed vertical lines

represent the ground truth for iteration boundaries, and thin

dashed vertical lines represent halves of iterations. Dots are

detected accesses, and crosses are the nonce bit 𝑘 values (1 or

0). Iterations where bit 𝑘 value is 0 have two accesses. From

the trace, we can easily read the nonce bits.

It takes only about 9,700 cycles on Cloud Run to execute

one iteration of the Montgomery ladder loop that we target.

Thus, when the nonce bits have a sequence of continuous

zeros, the attacker needs to detect a sequence of accesses

that are 4,850 cycles apart. As shown in Table 5, the prime

pattern of Prime+Scope’s [71] PS-Flush takes on average

6,024 cycles to complete, while the PS-Alt pattern has a

low detection rate (Figure 6). As a result, the Prime+Scope

versions either frequently miss memory accesses or report an

access as occurring at a time different from when the actual

access occurs. In contrast, our Parallel Probing strategy takes
on average only 1,121 cycles to execute (Table 5) and thus

accurately detects the memory accesses in ECDSA.

7.2 Finding the Target Cache Set with PSD

We apply our PSD method to identify the victim’s target SF

set on Cloud Run. To obtain the ground truth, we run the

victim and attacker programs in the same container. The

attacker mmaps the victim program so that the attacker can

access the target line. Then, when the attacker identifies an

eviction set that might correspond to the target SF set, the

attacker can validate it by checking whether the eviction set

indeed evicts the target line.

Scanning strategy. Since the attacker knows the VA of the

target cache line of the ECDSA victim, they only need to

construct eviction sets for SF sets at the page offset of the

target line and scan only those sets—i.e., it is the PageOffset

scenario. To approximate theWholeSys scenario, we also

measure the effectiveness of our approach by scanning cache

sets at every page offset in a random order.

The ECDSA victim program spends only about 25% of

its execution time running the vulnerable code. Therefore,

there is a high chance that the attacker cannot detect the

target set, as they may collect the traces while the victim

is not executing the vulnerable code—a problem known as

de-synchronization. Hence, the attacker repeatedly scans all

possible sets until detecting the target set or timeout. We

set the timeouts for PageOffset and WholeSys to 60 s and

900 s, respectively. Time spent on eviction set construction

is not counted towards the timeout. Implementation details

are presented in the extended version of this paper [112].

Evaluation setup. We conduct this experiment on Cloud

Run at different times of day, totaling 357 measurements

for PageOffset and 207 measurements forWholeSys. For

WholeSys, we deem the scan successful if it manages to

locate the cache set accessed by the either side of the branch,

as accesses made by either side can disclose the nonce 𝑘 .

Results. Table 6 lists the key metrics of finding the target

cache set using the PSD method. Given our timeout con-

figurations, 94.1% and 73.9% of the scanning attempts find

the target set under PageOffset and WholeSys, respec-

tively. The lower success rate under WholeSys is mainly

because we can only scan each SF set fewer times within

the timeout period, leading to more failures due to the de-

synchronization problem. Averaged among successful scans,

it takes 6.1 s and 179.7 s to find the target set under Page-

Offset andWholeSys, respectively. Finally, we scan from

762 sets/s to 831 sets/s. The scanning speed can be improved

by using multiple threads to scan cache sets in parallel.
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Table 6. Performance of identifying the target cache set.

Metric PageOffset WholeSys

Success Rate 94.1% 73.9%

Average Success Time 6.1 s 179.7 s

Std. Deviation of Success Time 6.9 s 177.4 s

95% Percentile Success Time 16.1 s 546.6 s

Average Scan Rate 831 sets/s 762 sets/s

7.3 End-to-End Nonce Extraction

Putting all the pieces together, we demonstrate end-to-end,

cross-tenant nonce𝑘 extractions on Cloud Run. In this demon-

stration, the attacker first successfully co-locates their attack

container with the victim container [111]. Then, the attacker

builds the eviction sets and finds the target set using the PSD

method, while sending requests to trigger victim executions.

Once the target set is identified, the attacker triggers the

victim execution 10 more times to steal the different nonces

used in each execution.

To process the memory access trace, we train a random

forest classifier [66, 67] to predict if a detectedmemory access

corresponds to an iteration boundary. To filter out false-

positive boundary predictions, we consider only boundary

pairs that are 8𝑘 to 12𝑘 cycles apart, as this is the duration

variation that we expect from a single iteration on these

hosts. From each pair of predicted neighboring boundaries,

we recover the nonce bit in the iteration by checking if there

is an extra access in the middle of the iteration.

We attempt end-to-end nonce 𝑘 extractions under the Pa-

geOffset scenario on 52 pairs of co-located containers on

Cloud Run. We identify a potential target set and observe a

signal in 47 of them. Within the 470 traces collected from

these 47 victims, we extract an average of 68% (or a median

value of 81%) of the nonce bits. Among these recovered bits,

our average bit error rate is 3%. The full attack, which in-

cludes constructing eviction sets, identifying the target SF

set, and collecting 10 traces, takes an average of 19 seconds.

8 Related Work

Side-channel attacks in cloud. Ristenpart et al. [75] ex-

amined the placement of virtual machines on physical hosts

within AWS and developed techniques to achieve co-location.

Zhang et al. [107] employed Flush+Reload for a cross-tenant

attack on a Platform-as-a-Service (PaaS) cloud. However,

Flush+Reload is no longer feasible in modern clouds [3, 79].

İnci et al. [39] in 2015 conducted a Prime+Probe attack on

AWS EC2 to extract RSA keys, using a reverse-engineered

LLC slice hash function and huge pages to build eviction

sets. Their attack is long running, relies on huge pages, and

targets an inclusive LLC—all of which are incompatible with

modern cloud environments.

Mitigations to cache-based side-channel attacks. De-

fenses can be broadly categorized into two types. The first

type, partition-based solutions [22, 23, 47, 53, 76, 88, 94, 110],

blocks attacks by partitioning the cache between different

tenants. However, this approach often requires complex hard-

ware design and results in high execution overhead. The

second type, randomization-based defenses [54, 55, 72, 73,

77, 80, 85, 95, 97], focuses on obfuscating the victim’s cache

usage. While this method offers high performance, it fails to

provide comprehensive security guarantees.

Eviction set construction. Algorithms for constructing

eviction sets have received significant attention [34, 56, 70,

81, 90, 101]. However, most approaches are developed and

evaluated in a quiescent local environment. Besides the group

testing [73, 90] and Prime+Scope [71] algorithms discussed

in Section 2.2.1, Prime+Prune+Probe (PPP) [70] exploits the

LRU replacement policy to defeat randomized caches bymini-

mizing memory accesses. CTPP [101], which is concurrent to

our work, builds on PPP by integrating it with Prime+Scope.

Based on the evaluation in CTPP [101], the success rates

of both PPP and CTPP fall to almost zero when a single

memory-intensive SPEC 2006 benchmark [36], such as mcf,
runs in the background. Using the average LLC access rate as

a metric, the cache activity caused by mcf is only about 10%

of what we observed on Cloud Run. Lastly, Guo et al. [34]

exploited a non-temporal prefetch instruction to accelerate

eviction set construction on Intel inclusive LLCs, but found

this technique inapplicable to Intel non-inclusive LLCs.

Prime+Probe techniques. Prior arts [26, 51] also used par-

allel probing in their Prime+Probe implementations [25, 52].

However, to our knowledge, we are the first to study the par-

allel probing strategy to strike a good balance between probe

and prime latency. Oren et al. [63] processed memory access

traces in the frequency domain to fingerprint websites.

9 Conclusion

In this paper, we presented an end-to-end, cross-tenant LLC

Prime+Probe attack on a vulnerable ECDSA implementa-

tion in the public FaaS Google Cloud Run environment. We

showed that state-of-the-art eviction set construction algo-

rithms are ineffective on Cloud Run. We then introduced

L2-driven candidate address filtering and a binary search-

based algorithm for address pruning to speed-up eviction set

construction. Subsequently, we introduced parallel probing

to monitor victim memory accesses with high time resolu-

tion. Finally, we leveraged power spectral density to identify

the victim’s target cache set in the frequency domain. Over-

all, we extract a median value of 81% of the secret ECDSA

nonce bits from a victim container in 19 seconds on average.

Ethical considerations.We limited our attempts to exfil-

trate information from only victims under our control. We

monitored just one SF set of the host at a time, thus minimiz-

ing potential performance interference with other tenants.
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