
Capo: A Software-Hardware Interface for
Practical Deterministic Multiprocessor Replay∗

Pablo Montesinos Matthew Hicks Samuel T. King Josep Torrellas

University of Illinois at Urbana-Champaign
{pmontesi, mdhicks2, kingst, torrellas}@cs.uiuc.edu

Abstract
While deterministic replay of parallel programs is a power-
ful technique, current proposals have shortcomings. Specifi-
cally, software-based replay systems have high overheads on
multiprocessors, while hardware-based proposals focus only
on basic hardware-level mechanisms, ignoring the overall re-
play system. To be practical, hardware-based replay systems
need to support an environment with multiple parallel jobs
running concurrently — some being recorded, others being
replayed and even others running without recording or re-
play. They also need to manage limited-size log buffers.

This paper addresses these shortcomings by introduc-
ing, for the first time, a set of abstractions and a software-
hardware interface for practical hardware-assisted replay of
multiprocessor systems. The approach, calledCapo, intro-
duces the novel abstraction of theReplay Sphereto sepa-
rate the responsibilities of the hardware and software com-
ponents of the replay system. In this paper, we also design
and buildCapoOne, a prototype of a deterministic multi-
processor replay system that implements Capo using Linux
and simulated DeLorean hardware. Our evaluation of 4-
processor executions shows that CapoOne largely records
with the efficiency of hardware-based schemes and the flex-
ibility of software-based schemes.

Categories and Subject DescriptorsC [Computer Systems
Organization]: C.0 General.Subjects: Hardware/Software
Interfaces; C.1 [Processor Architectures]: C.1.0 General.

General Terms Design, Measurement, Performance.

Keywords Capo, CapoOne, Deterministic Replay, Replay
Sphere.

∗ This work was supported in part by the National Science Foundation
under grants CNS 07-20593, CNS 08-34738 and CCF 08-11268; Intel and
Microsoft under the Universal Parallel Computing Research Center; and
gifts from IBM, Sun Microsystems, and the Internet Services Research
Center (ISRC) of Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-215-3/09/03. . . $5.00

1. Introduction
Recording and deterministically replaying execution gives
computer users the ability to travel backward in time, recre-
ating past states and events in the computer. Time travel is
achieved by recording key events when the software runs,
and then restoring to a previous checkpoint and replaying
the recorded log to force the software down the same execu-
tion path. This alluring mechanism has enabled a wide range
of applications in modern systems. First, programmers can
use time travel to help debug programs [27, 8, 2, 1, 5, 24],
including programs with non-determinism [22, 15], since
time travel can provide the illusion of reverse execution and
reverse debugging. Second, system administrators can use
time travel to replay the past execution of applications look-
ing for exploits of newly discovered vulnerabilities [13] or to
inspect the actions of an attacker [14]. Third, system design-
ers can use replay as an efficient mechanism for recreating
the state of a system after a crash [3].

To maximize the utility of a deterministic replay scheme,
it should have six desirable traits: (1) record an initial ex-
ecution at production-run speeds, to minimize timing dis-
tortions; (2) have minimal log space requirements, to sup-
port long recording periods; (3) replay executions at similar
speeds as initial executions, to maximize potential uses; (4)
require only modest hardware support; (5) operate on un-
modified software and binaries; and (6) given the popularity
of multi-core processors, efficiently record and replay multi-
threaded software on multiprocessor systems.

Current software-based replay systems [3, 22, 6, 24, 7]
make major strides toward achieving these goals, but fall
short in one or more areas. One recent technique, ReVirt [6],
implements replay support within a virtual machine monitor
(VMM) and can replay entire OSes deterministically and
efficiently. ReVirt works by recording all inputs from the
VMM into the OS, including interrupts and other sources of
non-determinism, to force the OS and applications down the
same execution path when replaying. However, ReVirt only
works for uniprocessors and the extensions of this technique
for replaying multi-threaded applications on multiprocessors
have substantial logging requirements and poor recording
and replay speeds [7].

Current hardware-based replay proposals also make ma-
jor advances toward achieving these goals, but are limited.
The idea in these systems is to use special hardware to de-

tect how the memory accesses of the different threads in-
terleave during the execution — typically leveraging cache
coherence protocol messages — and save such informa-
tion in a log. Later, the log is used to replay, recreating
the same memory access interleaving. Recent schemes in-
clude FDR [25], BugNet [19], RTR [26], Strata [18], De-
Lorean [17], and Rerun [11].

While these hardware-based replay proposals achieve low
run time overhead, have low logging space overhead, and
can cope with multiprocessor systems efficiently, they are
largely impractical for use in realistic systems. The main
problem is that they focus only on the hardware implemen-
tation of the basic primitives for recording and, sometimes,
replay. They do not address key issues such as how to sep-
arate software that is being recorded or replayed from soft-
ware that should execute in a standard manner (i.e., with-
out being recorded or replayed), or from other software that
should be recorded or replayed separately. This limitation is
problematic because practical replay systems require much
more than just efficient hardware for the basic operations.
For example, they likely need a software component to man-
age large logs (on the order of gigabytes per day), and a
way to mix standard execution, recorded execution, and re-
played execution of different applications in the same ma-
chine concurrently. Unfortunately, providing this function-
ality requires a redesign of the hardware-level mechanisms
currently proposed, and a detailed design and implementa-
tion of the software components that manage this hardware.

This paper addresses this problem. It presentsCapo, the
first set of abstractions and software-hardware interface for
practical hardware-assisted deterministic replay of programs
running on multiprocessor systems. A key abstraction in
Capo is theReplay Sphere, which allows system designers
to separate cleanly the responsibilities of the hardware and
the software components. To evaluate Capo, we design and
build a hardware-software deterministic replay system called
CapoOne. It is an implementation of Capo using Linux on
top of simulated DeLorean hardware [17].

Our evaluation of 4-processor executions running paral-
lel applications shows that CapoOne largely records with the
efficiency of hardware-based schemes and the flexibility of
software-based schemes. Specifically, compared to the De-
Lorean hardware-based replay scheme, CapoOne increases
the average log size by only 15% and 38% for engineer-
ing and system applications, respectively. Moreover, record-
ing under CapoOne increases the execution time of our en-
gineering and system applications by, on average, a mod-
est 21% and 41%, respectively. If two parallel applications
record concurrently, their execution time increase is, on av-
erage, 6% and 40% for the two classes of applications. Fi-
nally, replaying the engineering applications takes on aver-
age 80% more cycles than recording them. This is a low re-
play overhead, and it can be further reduced by implement-
ing a replay-aware thread scheduler in CapoOne.

The contributions of this paper are as follows:

1. It is the first paper to design a set of abstractions and
a software-hardware interface to enable practical hardware-
assisted deterministic replay of multiprocessors (Capo).

2. As part of the interface, it introduces the concept of Re-
play Sphere for separating the responsibilities of hardware
and software.

3. It is the first paper to enable hardware-assisted replay
systems to mix recording, replaying, and standard execution
in the same machine concurrently.

4. It builds and evaluates a prototype of a hardware-
software multiprocessor replay system (CapoOne).

This paper is organized as follows. Section 2 gives a back-
ground; Sections 3 and 4 present Capo and CapoOne; Sec-
tion 5 evaluates CapoOne; Section 6 presents a discussion;
and Section 7 reviews related work.

2. Background on Deterministic Replay
This section gives a brief overview of how current hardware
and software systems implement deterministic replay.

Deterministic replay of an initial parallel executionE is a
new executionE’ where, starting from the same initial state
as E and given the same inputs at the same points in the
execution, each thread (or processor, under full-system re-
play) executes the same instructions and the interleaving of
instructions from different threads is the same. The initial
execution is therecording phase, when the inputs to the exe-
cution, their timing, and the interleaving of instructions from
different threads are collected in areplay log. A replay sys-
temis an overall system that includes hardware and software
components for recording and replaying execution. Finally,
standard executionrefers to an execution that is neither be-
ing recorded nor replayed.

2.1 Hardware-Based Deterministic Replay

There are several recent schemes for hardware-based deter-
ministic replay of multiprocessor systems [25, 19, 18, 26, 17,
11]. They propose special hardware to detect the interleaving
of memory accesses or instructions from the different pro-
cessors during execution, and save the key information in a
log. This log is later used to replay the same interleaving.

Of these schemes, FDR [25], BugNet [19], Strata [18],
and RTR [26] are able to reproduce the interleaving of mem-
ory accesses by recording (a subset of) the data dependences
between processors. Data dependences trigger cache coher-
ence protocol messages, which these schemes intercept. De-
Lorean [17] uses a different approach. Rather than recording
data dependences, it records the total order of instructions
executed. To support this operation efficiently, each proces-
sor in DeLorean executes instructions grouped into chunks,
and only the total sequence of chunks is recorded. An arbiter
serializes and records chunk commits. Finally, Rerun [11]
uses an intermediate approach. It also detects data depen-
dences between processors but stores sequences of instruc-
tion groups in the logs.

Most of these schemes log and replay the full system
execution, including application, OS and other threads. The

exception is BugNet [19], which focuses on recording only
one application. BugNet presents a hardware solution for
recording the inputs to the application. It does not focus on
how to log the interleaving of the application threads.

Overall, these efforts focused on devising basic hardware
primitives for recording and, sometimes, replay. There has
been no emphasis on understanding either the modifications
required on the software layers (OS, libraries, or VMM)
that should drive and manage these hardware primitives, or
how software and hardware should work together. Our paper
addresses these specific topics.

2.2 Software-Based Deterministic Replay

There are several recent proposals for software-based deter-
ministic replay [3, 22, 6, 24, 7]. They propose software sys-
tems that record all sources of non-determinism, such as net-
work inputs or interrupts, and use this information to guide
the software down the same execution path during replay.

As an example, Flashback [24] records and replays pro-
cesses by modifying the OS to log all sources of non-
determinism during recording. This includes logging all re-
sults of system calls, plus any data the kernel copies into the
process. For example, if a process makes areadsystem call,
Flashback records the return value of the system call and the
data that the kernel copies into the read buffer. When replay-
ing, Flashback injects this same data back into the process
when it encounters this specific system call.

Although software-based schemes work well for unipro-
cessor systems, they have high run time overhead on multi-
processor machines because current techniques for interpos-
ing on shared-memory accesses are inefficient. Fortunately,
hardware-based schemes can record shared-memory inter-
leavings efficiently. However, none of the current software-
based schemes uses these efficient hardware-based mecha-
nisms. In our paper, we combine the best of the hardware-
based and software-based schemes.

3. Capo: Abstractions and Interface
We proposeCapo, a novel software-hardware interface and
a set of abstractions for building practical schemes for
hardware-assisted deterministic replay in multiprocessors.
In this section, we describe the main concepts in Capo. Note
that both the hardware and software components of Capo
can be implemented in a variety of ways.

In our discussion, for clarity, we refer to a replay sys-
tem where an OS provides the ability to record and replay
processes or groups of processes. The same ideas also ap-
ply to any privileged software layer that records and replays
unprivileged software running above — e.g., a VMM that
records and replays VMs or groups of VMs.

3.1 Replay Sphere

To enable practical replay, Capo provides an abstraction for
separating independent workloads that may be recording, re-
playing, or executing in a standard manner concurrently. For
this abstraction to be useful, it must provide a clean separa-

tion between the responsibilities of software and hardware
mechanisms. Moreover, it must also be meaningful to soft-
ware components and yet still low-level enough to map effi-
ciently to hardware.

This novel abstraction is called theReplay Sphereor
Spherefor short (Figure 1). A replay sphere is a group of
threads — together with their address spaces — that are
recorded and replayed as a cohesive unit. All the threads that
belong to the same process must run within the same replay
sphere. It is possible, however, to include different processes
within the same replay sphere. In our work, we call a thread
that runs within a replay sphere anR-thread. Each R-thread
is identified by anR-threadIDand each sphere has its own
set of R-threadIDs. Figure 1 shows a system with two replay
spheres and four processes. In Replay Sphere 1, all R-threads
belong to Process A, whereas Processes B and C run within
Replay Sphere 2.

HW

Replay Sphere 1 Replay Sphere 2

Replay HW

OSRSM

R-thread
1

R-thread
2

R-thread
1

R-thread
2

R-thread
3

thread
502

Process A
Process B
Process C
Process D

Figure 1. Architecture of Capo for an OS-level replay system.
The replay system includes user-level threads running within replay
spheres and a kernel-level Replay Sphere Manager (RSM) that
manages the underlying replay hardware and provides the illusion
of infinite amounts of replay hardware.

Execution enters a replay sphere when code from one of
its R-threads begins execution; execution leaves the replay
sphere when the R-thread stops execution and the OS takes
over. These transitions can be explicit or implicit, depending
on the type of event that occurs. Explicit transitions are trig-
gered by privileged calls (e.g., system calls) or by a special
instruction designed to enter or exit the replay sphere explic-
itly. Implicit transitions result from hardware-level interrupts
or exceptions that invoke the OS automatically.

In Capo, the hardware records in a log the interleaving of
the R-threads running within the same sphere. The software
records the other sources of non-determinism that may affect
the execution path of the R-threads, such as system call
return values and signals.

Our decision to use software-level threads (R-threads) as
the main principal in our abstractions, instead of hardware-
level processors, represents a departure from current pro-
posals for hardware-based replay. The extra level of indi-
rection of using software-level threads instead of hardware-
level processors allows us to track the same thread across
different processors during recording and during replay, pro-
viding the flexibility needed to integrate cleanly with current
OS scheduling mechanisms.

3.2 Separation of Responsibilities

With the replay sphere abstraction, Capo separates the duties
of the software and the hardware components as shown in
Table 1.

Software Duties (Per Sphere)
Assign the same R-threadIDs during recording and replay
Assign the same virtual addresses during recording and replay
Log the inputs to the replay sphere during recording
Inject the logged inputs back to the replay sphere during replay
Squash the outputs of the replay sphere during replay
Manage the buffers for the Interleaving and Sphere Input logs

Hardware Duties (Per Sphere)
Generate the Interleaving log during recording
Enforce the ordering in the Interleaving log during replay

Table 1. Separation of the duties of the software and the hardware
components in Capo.

Before recording an execution, the software allocates the
buffers that will store the logs. The software also identifies
the threads that should be recorded together, which are re-
ferred to as R-threads. In addition, the software assigns R-
threadIDs to R-threads using an algorithm that ensures that
the same assignment will be performed at replay. Finally, the
software must guarantee that the same virtual addresses are
assigned during recording and during replay. This is neces-
sary to ensure deterministic re-execution when applications
use the addresses of variables — for example, to index into
hash tables.

During the recording phase, the software logs all replay
sphere inputs into aSphere Input Log, while the hardware
records the interleaving of the replay sphere R-threads into
an Interleaving Log1 (Table 1). During the replay phase,
the hardware enforces the execution interleaving encoded in
the Interleaving log, while the software provides the entries
in the Sphere Input log back into the replay sphere and
squashes all outputs from the replay sphere. During both
recording and replay, the software also manages the memory
buffers of the Interleaving log and the Sphere Input log by
moving data to or from the file system.

Next, we describe Capo’s software (Section 3.3) and
hardware (Section 3.4) components.

3.3 Software Support: The Replay Sphere Manager

Capo’s main software component is the Replay Sphere Man-
ager (RSM). For each sphere, the RSM supports the duties
shown in the top half of Table 1. In addition, the RSM mul-
tiplexes the replay hardware resources between spheres, giv-
ing users the illusion of supporting unlimited spheres.

Figure 2 shows a logical representation of a four-processor
machine where the RSM manages three replay spheres. Each
sphere has its own log, which includes the Interleaving and
the Sphere Input logs. There are two replay spheres currently
scheduled on the hardware — Sphere 1 recording and Sphere
3 replaying. Sphere 1 has two R-threads running on CPUs 1

1 This log is often called the memory-interleaving, memory-ordering, or
processor-interleaving log in the literature [25, 18, 26, 17, 11].

and 2, while Sphere 3 has one R-thread running on CPU 4.
There is a third sphere (Sphere 2) that is waiting to run due to
lack of hardware — there is no free Replay Sphere Control
Block (RSCB), a hardware structure that will be described
in Section 3.4. As a result, CPU 3 is idle.

RSM

Replay
Sphere 3
replaying

(running)

RSCB RSCB

Replay
Sphere 2
recording

(ready)

Replay
Sphere 1
recording

(running)

log 1 log 3

log 2

SW

HW

CPU
1

CPU
2

CPU
3

CPU
4

Figure 2. Logical representation of a system where the RSM
manages three replay spheres.

For correct and efficient recording and replay, we claim
that the RSM must address three key challenges. First, it
must maintain deterministic re-execution when copying data
into a replay sphere. Second, it must determine when a
system call needs to be re-executed and when it can be
emulated. Third, it must be able to replay a sphere on fewer
processors than were used during recording.

3.3.1 Copying Data into a Replay Sphere

When the OS copies data into a location within a replay
sphere, extra care is needed to ensure correct deterministic
replay. This is because the memory region being written
to by the OS may be accessed by R-threads at the same
time. In this case, the interleaving between the OS code that
performs the writes and the R-threads that access the region
may be non-deterministic. Figure 3(a) illustrates this case.
In the figure, R-thread 1 makes a system call that will cause
the kernel to copy data into the user-modebuffer via the
copy to userfunction (1). Before the actual copy, the RSM
logs the input to thecopy to userfunction ((2) and (3)). The
kernel then copies the data intobuffer(4). Finally, while the
copy is taking place, R-thread 2 accessesbuffer, thus causing
a race condition betweencopy to userand R-thread 2 (5).

To ensure deterministic inputs into a replay sphere, we
consider two possibilities. First, we could inject inputs into
the sphere atomically. However, ensuring atomicity requires
blocking all R-threads that may access the region. As a
result, this approach penalizes R-threads even if they do
not access the region. A second, better, approach that we
use is to include thecopy to userfunction within the replay
sphere directly. This inclusion allows the hardware tolog
the interleavingbetween thecopy to usercode and the R-
threads’ code. This approach is symbolically depicted in
Figure 3(b). Although this approach is efficient, it creates
a less clear boundary between the code running within a

OSOS

R-thread
1

Replay Sphere 1

RSM

copy_to_user

buffer

R-thread
2

log 1 1

2

3

4

5

R-thread
1

Replay Sphere 1

RSM

copy_to_user

buffer

R-thread
2

log 1 1

2

3

5

6

4

(a) (b)

Figure 3. Race condition between the OScopy to user func-
tion and R-thread 2 (a). The data race is avoided by including
copy to userin the replay sphere (b).

replay sphere and the code running outside of it — since the
copy to userfunction runs within both the replay sphere and
the OS. Still, we use this approach because most system calls
cause inputs into replay spheres, and blocking all R-threads
during these system calls would be inefficient.

3.3.2 Emulating and Re-Executing System Calls

In Capo, the RSM emulates the majority of system calls
during replay. To do this, the RSM first logs the system call
during recording. Then, during replay, the RSM squashes the
system call and injects its effects back into the replay sphere,
thus ensuring determinism.

However, the RSM needs to re-execute some system calls
during replay. These are system calls that modify select state
outside of the replay sphere, which affects R-threads run-
ning within the sphere. They include system calls that mod-
ify the address space of a process, process management sys-
tem calls (e.g.,fork), and signal handling system calls. By
re-executing these system calls, we modify external states
directly during replay, which would require substantial addi-
tional functionality in the RSM to emulate correctly.

As a result of re-executing system calls, we must ensure
that external state changes affect R-threads deterministically.
One subtle issue that the RSM must handle arises from mod-
ifications to shared address spaces. R-threads formimplicit
dependenceswhen one R-thread changes the mapping or the
protection of a shared address space, and another R-thread
accesses this changed address space. Figure 4 shows an ex-
ample where one R-thread changes the protection of a page
that a second R-thread is using. In the figure, R-thread 1 and
R-thread 2 run on CPU 1 and CPU 2, respectively, and share
the same page table. In the example, R-thread 1 first issues
anmprotectsystem call to change the protection of a page,
and the system call modifies the page table (1). Eventually,
both CPUs will cache the new protection (2). After CPU 2
caches the new protection, the effects of the page table mod-
ification will become visible to R-thread 2, and R-thread 2
suffers a page fault (3). To ensure deterministic replay, the

interleaving between the page table modification and the use
of the affected addresses must be recorded and reproduced
faithfully during replay.

R-thread
1

Replay Sphere 1

R-thread
2

2

3

Page Table

CPU
1

CPU
2

1

TLB miss

while (...){
 *x = *x +1;
}

Fault on x

Figure 4. Example of potential non-determinism due to an im-
plicit dependence.

This issue largely disappears in replay schemes that use
full-system recording and replay [25, 18, 26, 17, 11]. This
is because they naturally record most OS actions related to
implicit dependencies (e.g., page fault handling). However,
in Capo, code that carries out address space changes resides
outside of the replay sphere and, therefore, is not invoked de-
terministically. As a result, the address space modifications
may not be injected into the replay at theprecisesame point
of execution (e.g., the exact same loop iteration in Figure 4),
thus violating the correctness of our replay system.

To solve this problem, Capo gives the RSM the ability
to explicitly express implicit dependencies to the hardware.
Interactions like the one in the example are recorded in the
log and can be replayed deterministically.

3.3.3 Replaying with a Lower Processor Count

Resource availability in a system is unpredictable and can
change from the time recording takes place to the time when
the user replays the execution. As a result, the system may
have fewer processors available during replay. In this case,
an R-thread that the hardware needs to replay next may be
unable to run because it is not scheduled on any processor.

To cope with this potential source of inefficiency, we con-
sider three possible solutions. First, we could rely on hard-
ware support to detect when an R-thread that is currently
unassigned to a processor needs to run, and trigger an inter-
rupt. This approach provides software with immediate no-
tification on replay stalls, but requires additional hardware
support. Second, the RSM could periodically inspect the In-
terleaving log to predict which R-threads need to be run
in the near future, and schedule them accordingly. How-
ever, this approach requires the hardware-level log to include
architecturally-visible states, making its format less flexible.
Also, even with this careful planning, the OS scheduling al-
gorithms may override the RSM. The third approach is for
the RSM to simply ensure that all the R-threads get frequent
and fair access to the CPUs. In this case, there will be some
wasted time during which all of the running R-threads may

be waiting for a preempted R-thread. Our design uses this
approach because it is simple and has low overhead.

3.4 Hardware Support

Capo’s hardware components are shown in Table 2. They are
a structure calledReplay Sphere Control Block (RSCB)per
activereplay sphere (i.e., per sphere that is currently using
at least one processor), a structure calledR-Thread Control
Block (RTCB)per processor that is currently being used by a
replay sphere, and an interrupt-driven buffer interface. These
components can be implemented in different ways to support
any of the proposals for hardware-based deterministic replay
such as FDR [25], BugNet [19], RTR [26], Strata [18], De-
Lorean [17], or Rerun [11].

Replay Sphere Control Block (RSCB): <per-sphere structure>
Mode register: Current execution mode of the replay sphere
Base, Limit, and Current registers: Pointers to the replay sphere log

R-Thread Control Block (RTCB) : <per-processor structure>
R-ThreadID register: ID of the R-thread running on the processor
RSID register: ID of the replay sphere using the processor

Interrupt-driven buffer interface

Table 2. Capo’s hardware components.

The RSCB is a hardware structure that contains informa-
tion about an active replay sphere. When a sphere is not
using any processor, like Sphere 2 in Figure 2, the state in
the RSCB is saved to memory. An ideal machine configura-
tion would have as many RSCBs as processors. Having more
RSCBs than processors does not make sense.

The RSCB consists of aMode register and log pointer
registers. The Mode register specifies the sphere’s execution
mode:Recording, Replaying, or Standard. The log pointer
registers are used to access the sphere’s log. At a high level,
they need to enable access to theBaseof the log, itsLimit,
and itsCurrent location — where the hardware writes to
(during recording) or reads from (during replay). The Cur-
rent pointer is incremented or decremented automatically in
hardware. Depending on the log implementation, there may
be multiple sets of such pointers.

The per-processor RTCB consists of two registers. The
first one contains the R-threadID of the R-thread that is
currently running on the processor. The R-threadID is per
replay sphere. It is short and generated deterministically in
software for each R-thread in the replay sphere. It starts from
zero and can reach the maximum number of R-threads per
replay sphere. The R-threadID is saved in the Interleaving
log, tagging the log entries that record events for that R-
thread. The second RTCB register contains the ID of the
replay sphere that currently uses the processor (RSID). The
hardware needs to know, at all times, which processors are
being used by which replay spheres because each replay
sphere interacts with a different log.

The size of the R-threadID is given by the maximum
number of R-threads that can exist in a replay sphere. Such
number can be high because multiple R-threads can time-
share the same processor. However, given that log entries
store R-threadIDs, their size is best kept small. In general,

the size of the RSID register is determined by the number
of concurrent replay spheres that the RSM can manage.
Such number can potentially be higher than the number of
RSCBs, since multiple replay spheres can time-share the
same hardware resources.

Depending on the implementation, the RTCB and RSCB
structures may or may not be physically located in the pro-
cessors — they may be located in other places in the ma-
chine. At each context switch, privileged software updates
them if necessary.

Finally, Capo also includes an interrupt-driven interface
for the Interleaving log. Such a log may or may not be
built using special-purpose hardware. However, in all of the
hardware-based deterministic replay schemes proposed, it is
at leastfilled in hardware, transparently to the software. In
Capo, we propose that, to use modest memory resources, it
be assigned a fixed-size memory region and, when such a
region is completely full (during recording) or completely
empty (during replay), an interrupt be delivered. At that
point, a module copies the data to disk and clears the region
(during recording) or fills the region with data from disk
(during replay) and restarts execution.

4. CapoOne: An Implementation of Capo
To evaluate Capo, we design and build a prototype of a deter-
ministic replay system for multiprocessors calledCapoOne.
It is an implementation of Capo using Linux and simulated
DeLorean replay hardware [17]. It records and replays user-
level processes and not the OS. In this section, we discuss
the software and hardware implementation in turn.

4.1 Software Implementation

We modify the 2.6.24 Linux kernel by adding a data struc-
ture per replay sphere calledrscb t that stores the hardware-
level replay sphere context. We also add a per R-thread data
structure calledrtcb t that stores the R-threadID and re-
play sphere information for the R-thread. The RSM manages
these structures by saving and restoring them into hardware
RSCBs and RTCBs during context switches.

We change the kernel to make sure thatcopy to user
is the only kernel function used to copy data into replay
spheres. Then, we modifycopy to userso that it records all
inputs before injecting them into the replay spheres. To help
makecopy to userdeterministic, we inject data one page at
a time, and make sure that no interrupt or page fault can
occur during the copy. We also change the kernel to track
implicit dependences. We make page table modifications and
the resulting TLB flushes atomic, to avoid race conditions
with R-threads running on other CPUs.

Our RSM tracks processes as they run using the Linux
ptrace process tracing mechanism. Ptrace gives processes
the ability to create child processes, receive notification on
key events, and access arbitrary process states as the child
process runs. Using the ptrace mechanism, we implement
much of our RSM in user mode.

Interleaving
Log M-1Interleaving

Log 0Interleaving
Log 0

Baseline
DeLorean structures

DIR+MEM

 Network
Interrupt

Log
I/O
Log

Node 0

Proc + Caches

Chunk
Size
Log

Node N-1

I/O
Log

Interrupt
Log

Sy
st

em

Ch
ec

kp
oi

nt

Proc + Caches

DMA
Log

DMA

Processor
Interleaving

Log

Arbiter
Chunk
Size
Log

Baseline
CapoOne structures

DIR+MEM

Node 0 Node N-1

Proc + CachesDMA

Interleaving
Log 0

 Network

Arbiter 0 ... N-1RTCBs

0 ... N-1RSCBs

Proc + Caches
Chunk Size

Log Registers
Chunk Size

Log Registers

(a) (b)

 Mode Register Mode Register

M ≤ N

Figure 5. Multiprocessor with the DeLorean hardware as presented in the DeLorean paper [17] (a), and as implemented in CapoOne (b).

4.2 Hardware Implementation

In CapoOne, we implement the hardware interface of Table 2
for DeLorean. This section describes the implementation in
detail and, to give more insight, Section 4.2.1 outlines the
implementation for FDR [25] and similar schemes.

Figure 5(a) shows a multiprocessor with the DeLorean-
related hardware. CapoOne implements the interface of Ta-
ble 2 mostly in the arbiter module. In addition, there are a
few other changes to make to the DeLorean architecture of
Montesinoset al. [17] because that architecture was a full-
system replayer, while CapoOne is not. We consider the two
issues separately.

In CapoOne, the RTCB and RSCB structures are placed
in the arbiter module. Specifically, as shown in Figure 5(b),
the arbiter contains an array ofN RTCBs and an array ofN
RSCBs, whereN is the number of processors in the machine.
Each RTCB corresponds to one processor. If the processor
is currently used by a replay sphere, its RTCB is not null.
The RTCB contains the R-threadID of the R-thread currently
running on the processor and, in the RSID field, a pointer
to the entry in the RSCB array corresponding to the replay
sphere currently using the processor. In this implementation,
therefore, the size of the RSID field is given by the max-
imum number of concurrent active replay spheres. Finally,
each active replay sphere has a non-null RSCB. Each RSCB
contains the sphere’s mode, and the current, base, and limit
pointers to the sphere’s Interleaving log. In Figure 5(b), we
show the case when there areM active replay spheres and,
therefore,M Interleaving logs. Note thatM ≤ N. The Inter-
leaving log is DeLorean’s Processor Interleaving log.

For performance reasons, each node also has some spe-
cial hardware registers, namely the Mode register and the
Chunk Size Log registers. The former contains the mode
of the sphere that is currently using the processor; the lat-
ter contains the top of DeLorean’s Chunk Size log for the
R-thread currently running on the processor.

With this hardware, every time that the OS schedules
an R-thread on a processor, the OS potentially updates the
node’s Mode and Chunk Size Log registers, the processor’s
RTCB, and the RSCBs of the spheres for this R-thread and
for the preempted R-thread — recall that spheres that cur-
rently use no processor have a null RSCB. As the R-thread

executes, it writes or reads the Chunk Size Log registers de-
pending on whether the Mode register indicates Recording
or Replaying mode, respectively. If the Chunk Size Log reg-
isters are used up before the OS scheduler is invoked again,
an interrupt is delivered, and the OS saves their contents
and clears them (during recording) or loads then with new
data (during replay). The Chunk Size log is used very infre-
quently, so a few registers are enough.

During execution, when the arbiter receives a message
from a processor requesting a chunk commit, the arbiter
checks the RTCB for the processor. From that RTCB, it reads
its current R-threadID and, through the RSID pointer, the
mode of the sphere that currently uses the processor. If the
mode is Standard, no action is taken. Otherwise, the Inter-
leaving log is accessed. If the mode is Recording and the
chunk can commit, the hardware adds an entry in the Inter-
leaving log and tags it with the R-threadID. If, instead, the
mode is Replaying, the hardware reads the next Interleaving
log entry and compares the entry’s tag to the R-threadID. If
they are the same, the chunk is allowed to commit and the
Interleaving log entry is popped. There are no changes to the
encoding of messages to or from the arbiter.

Since the DeLorean architecture of Montesinoset al.[17]
is a full-system replayer and CapoOne is not, we need to
make additional changes to the original architecture. First,
there is no need for the hardware-generated logs for DMA,
I/O, and interrupts shown in Figure 5(a). In CapoOne, during
recording, privileged software records all the inputs to the
replay sphere in the Sphere Input log; during replay, privi-
leged software plays back these log entries at the appropri-
ate times. This Sphere Input log is invisible to the hardware;
it is managed by the software. For this reason, we do not
show it in Figure 5(b). Moreover, since the checkpointing is
now per replay sphere, it is likely performed and managed by
privileged software and, therefore, it is not shown in the fig-
ure either. Finally, since we only record chunks from replay
spheres, the algorithm for creating chunks changes slightly.
Specifically, at every system call, page fault, or other OS
invocation, the processor terminates the current chunk and
commits it. Interrupts are handled slightly differently: for
ease of implementation, they squash the current chunk and
execute right away. In all cases, as soon as the OS completes
execution, a new application chunk starts.

4.2.1 Hardware Implementation for FDR-like Schemes

We now outline how the hardware interface of Table 2 can
be implemented for FDR [25] and similar replay schemes.
The idea is to tag cache lines with R-thread and, poten-
tially, sphere information. In this case, each processor has
R-threadID, RSID, and Mode registers. These registers are
updated every time that the OS schedules a new thread on
the processor. During recording, when a processor accesses
a line in its cache, in addition to tagging it with its current
dynamic instruction count, it also tags it with its current R-
threadID and, potentially, RSID. This marks the line as be-
ing accessed by a given R-thread of a given replay sphere.
The line can remain cached across context switches. At any
time, when a data dependence between two processors is de-
tected, the message sent from the processor at the depen-
dence source to the processor at the dependence destination
includes the R-threadID and, potentially, the RSID of the
line. The receiver processor then selects a local log based on
its own current R-threadID and RSID. In that log, it stores
a record composed of the R-threadID of the incoming mes-
sage plus the dynamic instruction counts of the source and
destination processors.

5. Evaluation of CapoOne
This section discusses our evaluation of CapoOne. We first
describe our experimental setup. Then, we evaluate different
aspects of CapoOne: log size, hardware characteristics, and
performance overhead during recording and replay.

5.1 Evaluation Setup

To evaluate CapoOne, we use two different environments,
which we callSimulated-DeLoreanand Real-Commodity-
HW. Both environments run the same Ubuntu 7.10 Linux
distribution with a 2.6.24 kernel that includes CapoOne’s
software components. In theSimulated-DeLoreanenviron-
ment, we use the Simics full-system architecture simulator
enhanced with a detailed model of the DeLorean hardware.
We model a system with four x86 processors running at 2
GHz, 1,000 instructions per chunk, DeLorean’sOrderOnly
logging method, and the latency and bandwidth parameters
used in the DeLorean paper [17]. We use this environment
to evaluate a complete CapoOne system.

In the Real-Commodity-HWenvironment, we use a 4-
core HP workstation with an Intel Core 2 Quad processor
running at 2.5GHz with 3.5GB of main memory. We use
this environment to evaluate the software components of
CapoOne on larger problem sizes than are feasible with
Simulated-DeLorean, allowing us to take more meaningful
timing measurements.

We evaluate CapoOne using ten SPLASH-2 applica-
tions configured to execute with four threads, a web server,
and a compilation session. We call the SPLASH-2 applica-
tions engineering applicationsand the restsystem applica-
tions. We run all the applications from beginning to end.
The SPLASH-2 applications use the standard input data
sizes for theSimulated-DeLoreanenvironment and larger

sizes for theReal-Commodity-HWenvironment. The web
server application is anApacheweb server exercised with
a client application. In theReal-Commodity-HWenviron-
ment, it downloads 150MB of data via 1KB, 10KB, and
100KB file transfers, and uses five or ten concurrent client
connections depending on the experiment. In theSimulated-
DeLoreanenvironment, we run the same experiments except
that we only download 50MB of data. We call the applica-
tionsapache-1K, apache-10K, andapache-100Kdepending
on the file transfer size. The compilation application for
the Real-Commodity-HWenvironment is a compilation of
a 2.6.24 Linux kernel using the default configuration val-
ues. For theSimulated-DeLorean, it is a compilation of the
SPLASH-2 applications. We run the compilation with a sin-
gle job (make) or with four concurrent jobs (make-j4).

Our experimental procedure consists of a warm-up run
followed by six test runs. We report the average of the six
test runs. In all experiments, the standard deviation of our
results is less than three percent. All log sizes we report are
for logs compressed usingbzip.

5.2 Log Size

Figure 6 shows the size of CapoOne’s logs, namely the
Interleaving plus the Chunk Size logs (bottom) and the
Sphere Input log (top), measured in bits per committed kilo-
instruction. Although not seen in the figure, the contribution
of the Chunk Size log is practically negligible. In the figure,
SP2-G.M. is the geometric mean of SPLASH-2, while SYS-
G.M. is the geometric mean of the system applications. This
experiment uses theSimulated-DeLoreanenvironment.

barnes

fft fm
m

lu ocean
radiosity
radix
raytrace
w

ater-ns
w

ater-sp
S

P
2-G

.M
.

apache-1K
apache-10K
apache-100K
m

ake
m

ake-j4
S

Y
S

-G
.M

.

0

2

4

6

8

Lo
g

si
ze

 (
bi

ts
/k

ilo
-in

st
ru

ct
io

n) Interleaving + Chunk Size Logs Sphere Input Log

Figure 6. CapoOne’s log size in bits per kilo-instruction.

The figure shows that CapoOne generates a combined log
of, on average, 2.5 bits per kilo-instruction in the engineering
applications and 3.8 bits in the system applications. In most
applications, the Interleaving log contributes with most of
the space. This is especially true for the engineering applica-
tions because most of them interact with the OS infrequently.
The one exception israytrace, which issues more file system
reads than the other engineering applications, thus requiring
a larger Sphere Input log. As expected, the system applica-
tions require larger Sphere Input logs because they execute
more system calls.

Overall, we find that the size of the Interleaving plus
Chunk Size logs is comparable to the size reported by Mon-
tesinoset al. [17]. When comparing the size of these logs
to the total logging overhead of CapoOne, we see that the

Sphere Input log increases the average logging requirements
of the hardware only modestly: by 15% and 38% for the en-
gineering and system applications, respectively.

5.3 Hardware Characterization

Table 3 characterizes the CapoOne hardware during record-
ing under theSimulated-DeLoreanenvironment. The first
two columns show the average number of dynamic instruc-
tions per chunk and the percentage of all chunks that attain
the maximum chunk size (full size chunks). TheTruncated
Chunkscolumns show the three main reasons why the hard-
ware had to truncate the chunk: cache overflows, system
calls, and page faults.

Avg. Full Truncated Chunks
Application Chunk Size Cache System Page

Size Chunks Overflows Calls Faults
(# of insts) (%) (%) (%) (%)

barnes 999 99.8 40.7 29.7 29.4
fft 981 97.8 0.0 14.4 85.4
fmm 998 99.6 30.4 6.4 63.0
lu 996 99.6 0.3 53.8 45.7
ocean 977 97.8 0.9 63.7 35.3
radiosity 994 99.1 5.2 44.8 49.9
radix 982 95.1 78.7 1.9 19.3
raytrace 993 99.0 9.3 38.5 52.1
water-ns 953 91.6 85.9 0.8 13.1
water-sp 989 97.2 93.7 1.9 4.3
SP2-AVG 986 97.6 34.5 25.5 39.7
apache-1K 785 65.9 1.3 93.2 5.3
apache-10K 781 66.2 1.1 92.3 6.6
apache-100K 773 65.0 0.9 93.4 5.5
make 993 96.5 16.6 54.9 28.3
make-j4 993 96.6 14.3 58.2 27.6
SYS-AVG 865 78.5 6.7 78.4 14.6

Table 3. CapoOne’s hardware characterization.

The data shows that, on average, 98% and 97% of the
chunks in the engineering and compilation applications, re-
spectively, are full-sized. For the web server applications,
only 66% of the chunks reach full size because of the high
system call frequency in the Apache application. In theory,
applications with short chunks in Table 3 should match those
with long Interleaving plus Chunk Size logs in Figure 6.
However, the correlation is not that clear due to the effect
of log compression.

5.4 Performance Overhead during Recording

We are interested in CapoOne’s execution time overhead
during recording in two situations, namely when there is a
single replay sphere in the machine and when there are mul-
tiple. For these experiments, we use theReal-Commodity-
HWenvironment. This is because its larger application prob-
lem sizes help us get more meaningful results. Moreover, all
of the recent works on hardware-based deterministic replay
schemes indicate that the execution time overhead caused by
the recording hardware is negligible [25, 18, 26, 17, 11].

We first consider a single sphere in the machine. Figure 7
shows the execution time of the applications running on four
processors when they are being recorded. The bars are nor-
malized to the execution time of the same applications under
standard execution — therefore, execution time equal to 1.0

means that there is no CapoOne overhead. The figure shows
that, on average, recording under CapoOne increases the ex-
ecution time of our engineering and system applications by
21% and 41%, respectively. This is a modest overhead that
should affect the timing of concurrency bugs little.

barnes

fft fm
m

lu ocean
radiosity
radix
raytrace
w

ater-n2
w

ater-sp
S

P
2-A

V
G

.
apache-1k
apache-10k
apache-100k
m

ake
m

ake-j4
S

Y
S

-A
V

G
.

0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Standard execution Interposition RestNoFS FS

Figure 7. Execution time overhead of CapoOne during recording
for a single replay sphere in the machine.

Figure 7 breaks down this overhead into three basic parts.
One is the interposition overhead, namely the overhead
caused by the ptrace mechanism to control the execution of
the application. The next one is the rest of the RSM and ker-
nel overhead without exercising the file system (RestNoFS).
Finally, there is the overhead of storing the logs into the file
system (FS). From the figure, we see that practically all of
the overhead in the engineering applications, and most of the
one in the system ones comes from interposition overhead.
Thus, improving the performance of interposition will likely
improve the results for these applications significantly. The
system applications also have noticeable overhead due to
RestNoFSandFS. In these applications, the OS is invoked
more frequently, and there is more file system activity.

We now measure CapoOne’s execution time overhead
when two spheres record simultaneously. In this experiment,
we measurepairs of applications. A pair consists of two
instances of the same application running concurrently on
the four-processor machine with two threads each. Conse-
quently, we change the compilation to run with two concur-
rent jobs (make-j2). For the Apache applications, we cannot
always control the number of threads and, therefore, there
may be more threads than processors.

We test three scenarios. In the first one, both applica-
tions run under standard execution — therefore, there is no
CapoOne overhead. In the second one, one application runs
under standard execution and the other is being recorded. In
the third scenario, both applications are being recorded. Fig-
ure 8 shows the resulting normalized execution times. For
each application, we show three pairs of bars, where each
pair corresponds to one of the three scenarios described, in
order, and the two bars in a pair correspond to the two appli-
cations. We will call these bars Bar 1 to Bar 6, starting from
the left. For a given application, all the bars are normalized
to the execution time of a single, 2-threaded instance of the
application running alone in the machine.

We make two observations. First, consider the second
scenario, where one sphere is not being recorded and one
is (Bars 3-4 of each application). We see that, generally, the

barnes
fft fmm lu ocean radiosity

radix raytrace
water-ns

water-sp
SP2-G.M.

apache-1K
apache-10K

apache-100K
make-j2

SYS-G.M.

0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e Standard execution Recording

Figure 8. Execution time overhead of CapoOne during recording when two replay spheres share the machine.

two spheres do not induce overhead on each other. To see
this, note that, on average, Bar 3 is no higher than Bar 2.
Moreover, the ratio of Bar 4 to Bar 3 is even lower than
the height of the bars in Figure 7, where there was a single
sphere in the whole machine.

For the second observation, we focus on Bars 5-6, where
both spheres are being recorded. Comparing these two bars
to Bars 1-2, we see that recording two parallel applications
concurrently increases their execution time over standard
execution by an average of 6% and 40% for engineering
and system applications, respectively. This is also a very
modest overhead. The overhead is high in only two system
applications, namelyapache-1Kand make-j2. This result
mirrors the overheads ofapache-1Kand make-j4 (which
is roughly equivalent to two concurrentmake-j2instances)
from the single-sphere experiments.

5.5 Performance Overhead during Replay

Finally, we measure CapoOne’s performance overhead dur-
ing replay. We perform two sets of experiments. In the first
one, we record and replay the SPLASH-2 applications us-
ing the Simulated-DeLoreanenvironment. Then, since the
processes in our Apache applications do not share data with
each other, we note that our RSM can replay the Apache ap-
plications without assistance from the DeLorean hardware.
Consequently, in our second experiment, we record and re-
play theapache-1K, apache-10K, andapache-100Kapplica-
tions using theReal-Commodity-HWenvironment. Finally,
we are unable to provide replay performance results for the
compilation applications at this point.

Figure 9 compares the execution of the SPLASH-2 ap-
plications during recording and during replay. For simplic-
ity, our simulator models each instruction to take one cycle
to execute, and reports execution time in number of cycles
taken to execute the application. Consequently, for each ap-
plication, the figure shows two bars, corresponding to the
number of cycles taken by recording (Rc) and by replaying
(Rp) the application. In each application, the bars are nor-
malized toRc. The bars show theExecutioncycles and, in
the replay bars, the cycles that a processor is stalled, having
completed a chunk and waiting for its turn to commit it, ac-
cording to the order encoded in the Interleaving log. Such
stall is broken down based on whether the completed chunk
contains user code (User Stall) or code from the kernel or
RSM (Kernel+RSM Stall). The latter occurs when, in the
execution of thecopy to userfunction, code from the RSM
or the kernel needs to be ordered relative to user code.

The figure shows that, in all applications, replay takes
longer than recording. On average, the replay run takes 80%
more cycles than the recording run. TheExecutioncycles
generally vary little between the two runs — although the
RSM and kernel activity can be different in two runs, for
example when system calls are emulated rather than re-
executed. However, the main difference between theRcand
Rp bars is the presence of stall cycles during replay. Such
stall cycles are dominated byUser Stall.

The stall cycles are substantial because, often, the R-
thread that needs to commit the next chunk is not even run-
ning on any processor. This occurs even though the applica-
tion has no more R-threads than processors in the machine.
A better thread scheduling algorithm that tries to schedule
all the threads of the application concurrently should reduce
these cycles substantially. Overall, we consider that our ini-
tial version of CapoOne replay has a reasonably low perfor-
mance overhead, and that future work on thread scheduling
will reduce the overhead more.

We now consider the web server applications. Recall that
we run them using theReal-Commodity-HWenvironment
and, therefore, measure their performance in elapsed time.
Table 4 shows the execution time of the replay relative to
the execution time of a standard run. On average for the
Apache applications, replay only takes 54% of the time
taken by the standard execution run. Inapache-1K, replay
takes nearly as much time as the standard execution run.
This is expected becauseapache-1Kis both CPU intensive
and issues system calls frequently. However, inapache-10K
andapache-100K, CapoOne replays execution significantly
faster than the standard execution run. The reason is that
these applications are both network bound and have a low
CPU utilization. When CapoOne replays these applications,
the RSM injects the results of network system calls into the
replay spherewithout accessing the network, resulting in a
faster execution. This phenomenon is related toidle time
compression[6], where any CPU idle time is skipped during
replay, causing replay to outperform initial executions that
have significant amounts of idle time. Overall, CapoOne
replays system applications at high speed.

Application Normalized Replay Execution Time
apache-1K 0.92
apache-10K 0.57
apache-100K 0.14
AP-AVG. 0.54

Table 4. Replay performance of the web server applications.

Rc Rp Rc Rp Rc Rp Rc Rp Rc Rp Rc Rp Rc Rp Rc Rp Rc Rp Rc Rp Rc Rp

barnes fft fmm lu ocean radiosity radix raytrace water-ns water-sp SP2-AVG

0

0.5

1.0

1.5

2.0

2.5
N

or
m

al
iz

ed
 C

yc
le

s
Execution User Stall Kernel + RSM Stall

Figure 9. Normalized number of cycles taken by the SPLASH-2 applications during recording (Rc) and replay (Rp).

6. Discussion
The development of the CapoOne hardware-software proto-
type has given us some insights into key issues in experimen-
tal replay systems. One such issue relates to RSM implemen-
tation. For simplicity, we decided to implement the RSM in
user mode, using theptraceprocess tracing mechanism of
Linux to interpose on recording and replaying processes. Al-
though this decision made our initial prototype easier to im-
plement, our first iteration added substantial overhead during
recording. To reduce this overhead, we included two opti-
mizations that buffer data for system calls within the kernel,
thus minimizing costly traps to the RSM. These optimiza-
tions improved performance significantly, but increased the
complexity of the kernel-mode portion of the RSM. Look-
ing back, the optimizations were complicated enough that
a kernel-mode RSM implementation may have been both
cleaner and higher performing.

One surprising aspect of our RSM implementation is that
we did not need to use a versioning file system [10, 23]
to include the hard disk state within our checkpoints. To
reduce log sizes, software-only replay systems commonly
include disk state within checkpoints and allow replaying
software to recreate disk state without logging it explicitly
in the same way replaying software recreates memory state
[6]. However, experiments showed that the hardware-level
Interleaving log accounts for the majority of data within
our replay logs, thus obviating the need to introduce the
complexities of including disk state within our checkpoints.

On the hardware side, we found that using DeLorean as
the underlying recording hardware scheme made the transi-
tion from per-processor replay to per-thread replay surpris-
ingly easy. This is due to DeLorean’s unique way of creat-
ing the log as a total order of program chunks. This method
easily lends itself to combining per-thread chunk sequences
rather than per-processor chunk sequences. However, since
we wanted to record and replay applications rather than a
full system, we had to modify DeLorean’s chunking policies
substantially. In particular, chunks had to be truncated at sys-
tem calls and page faults. This added non-trivial complexity.

7. Related Work
Several software-based deterministic replay schemes have
been proposed. In Recap [21], the compiler inserts code
for every read that may access a shared memory loca-
tion. Agora [9] uses write-once memory and a history log
for maintaining the correct state of a program. Instant Re-

play [16] logs execution by using Reader-Writer locking se-
mantics for accessing shared memory. DejaVu [12] records
scheduling invocations of a Java Virtual Machine to sup-
port deterministic replay of multithreaded Java applications
on uniprocessors. Russinovich and Cogswell [22] propose
modifying the OS scheduler of a uniprocessor so that it logs
each thread switch. Flashback [24] uses shadow processes
to enable efficient rollback of the memory state of a process
while a lightweight logger records the process interaction
with the OS.

Other researchers propose using virtual machine moni-
tors to replay entire virtual machines. Bressoud and Schnei-
der [3] modify a hypervisor to replay virtual machines on
Alpha-based computer systems, and the ReVirt project [6]
modifies a VMM to replay virtual machines on a modern
x86-based computer system. Dunlapet al. extend ReVirt to
work for multiprocessor virtual machines [7].

Several hardware-based schemes have been proposed
for deterministic multiprocessor replay. The Flight Data
Recorder (FDR) [25] is a full-system recorder for directory-
based multiprocessors. It augments the hardware in the
caches and in the cache coherence protocol to identify and
record coherence messages between processors. It imple-
ments a hardware version of Netzer’s Transitive Reduction
(TR) optimization [20] to reduce the number of recorded
dependences. Xuet al. [26] extend FDR by introducing
Regulated Transitive Reduction (RTR). This scheme intro-
duces artificial dependencies so that Netzer’s TR can elimi-
nate additional dependencies. BugNet [19] records user pro-
cesses by storing the result of all load instructions within
a hardware-based dictionary. Strata [18] maintains a per-
processor counter that records the number of memory oper-
ations issued by a processor. Before a dependence-forming
memory operation completes, Strata logs the memory opera-
tion counts of all the processors. Rerun [11] does not record
data dependences in its log. Instead, it records the number of
instructions executed by a processor between dependences.
The section of dynamic instructions without dependences is
called an Episode.

DeLorean [17] is the scheme used in this paper. It uses
the BulkSC execution mode proposed by Cezeet al. [4],
where processors continuously execute large blocks of in-
structions atomically and in isolation. This execution mode
can be thought of as processors executing software-invisible
transactions all the time. Each of these blocks is called a
Chunk, and includes a fixed number of dynamic committed
instructions (e.g., 1,000).

Every time that a processor completes a chunk, it sends
a request to commit to a central module called the Arbiter.
The request includes a hardware signature summarizing the
footprint of the chunk. The arbiter uses this signature to de-
cide immediately whether the chunk can commit. To record
the execution of a parallel program, DeLorean only needs to
record the ordered list of chunk commits.

Under theOrderOnlyrecording mode, the arbiter logs the
ID of the processors committing the chunks in aProces-
sor Interleavinglog. There are a few, somewhat rare, events
that truncate a currently-running chunk and force it to com-
mit early. They include cache overflow. For these ”short”
chunks, a per-processorChunk Sizelog stores the chunk size
and their position in the sequence of local chunks.

During replay, all processors execute normally, creating
chunks and requesting the arbiter to let them commit the
chunks. The arbiter uses the Processor Interleaving log to de-
lay or to accept the commit of individual chunks. Moreover,
each processor also reads its Chunk Size log to identify the
position and size of small chunks.

8. Conclusions
Current proposals for hardware-based deterministic replay
of multiprocessors focus only on the implementation of the
basic primitives for recording and, sometimes, replay. A
practical system additionally requires a software component
that interfaces with these primitives, manages large logs, and
enables the concurrent execution of multiple parallel appli-
cations that mix standard, recorded, and replayed execution.
To solve this problem, this paper introduced Capo, the first
set of abstractions and software-hardware interface for de-
terministic replay of multiprocessors. A key abstraction in
Capo is the Replay Sphere, which separates the responsibil-
ities of the hardware and the software. To evaluate Capo, we
built a prototype called CapoOne based on Linux and De-
Lorean.

We evaluated CapoOne with 4-processor executions.
Compared to the DeLorean hardware-only scheme, CapoOne
increased the average log size by only 15% and 38% for en-
gineering and system applications, respectively. Moreover,
recording under CapoOne increased the execution time of
the engineering and system applications by, on average,
only 21% and 41%, respectively. If two parallel applica-
tions record concurrently, their execution time increase was,
on average, 6% and 40% for the two classes of applications.
Finally, replaying the engineering applications took on av-
erage a modest 80% more cycles than recording them. With
these modest overheads, we argue that deterministic replay
of multiprocessor systems is a powerful and practical tool to
debug concurrency bugs.

References
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “An

Execution-Backtracking Approach to Debugging,”IEEE
Software, vol. 8, May 1991.

[2] B. Boothe, “Efficient Algorithms for Bidirectional Debug-
ging,” in PLDI, June 2000.

[3] T. C. Bressoud and F. B. Schneider, “Hypervisor-Based Fault-
Tolerance,” inSOSP, Dec. 1995.

[4] L. Ceze, J. M. Tuck, P. Montesinos, and J. Torrellas, “BulkSC:
Bulk Enforcement of Sequential Consistency,” inISCA, June
2007.

[5] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung, “Reversible De-
bugging Using Program Instrumentation,”IEEE Transactions
on Software Engineering, vol. 27, August 2001.

[6] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen,
“ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay,” inOSDI, Dec. 2002.

[7] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and
P. M. Chen, “Execution Replay of Multiprocessor Virtual
Machines,” inVEE, Mar. 2008.

[8] S. I. Feldman and C. B. Brown, “IGOR: A System for Program
Debugging Via Reversible Execution,” inPADD, Nov. 1988.

[9] A. Forin, “Debugging of Heterogeneous Parallel Systems,” in
PADD, May 1988.

[10] D. Hitz, J. Lau, and M. Malcolm, “File System Design
for an NFS File Server Appliance,” inUSENIX Technical
Conference, Jan. 1994.

[11] D. R. Hower and M. D. Hill, “Rerun: Exploiting Episodes for
Lightweight Memory Race Recording,” inISCA, June 2008.

[12] J. Choi and H. Srinivasan, “Deterministic Replay of Java
Multithreaded Applications,” inSPDT, Aug. 1998.

[13] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen,
“Detecting Past and Present Intrusions Through Vulnerability-
Specific Predicates,” inSOSP, Oct. 2005.

[14] S. T. King and P. M. Chen, “Backtracking Intrusions,” in
SOSP, Oct. 2003.

[15] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging
Operating Systems with Time-Traveling Virtual Machines,” in
USENIX Technical Conference, April 2005.

[16] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging
Parallel Programs with Instant Replay,”IEEE Transactions
on Computers, vol. 36, April 1987.

[17] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Record-
ing and Deterministically Replaying Shared-Memory Multi-
processor Execution Efficiently,” inISCA, June 2008.

[18] S. Narayanasamy, C. Pereira, and B. Calder, “Recording
Shared Memory Dependencies Using Strata,” inASPLOS,
Oct. 2006.

[19] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet:
Continuously Recording Program Execution for Deterministic
Replay Debugging,” inISCA, June 2005.

[20] R. H. B. Netzer, “Optimal Tracing and Replay for Debugging
Shared-Memory Parallel Programs,” inPADD, May 1993.

[21] D. Z. Pan and M. A. Linton, “Supporting Reverse Execution
for Parallel Programs,” inPADD, Jan. 1988.

[22] M. Russinovich and B. Cogswell, “Replay for Concurrent
Non-Deterministic Shared-Memory Applications,” inPLDI,
May 1996.

[23] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir, “Deciding When to Forget in the
Elephant File System,” inSOSP, Dec. 1999.

[24] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou,
“Flashback: A Lightweight Extension for Rollback and
Deterministic Replay for Software Debugging,” inUSENIX
Technical Conference, 2004.

[25] M. Xu, R. Bodik, and M. D. Hill, “A ”Flight Data Recorder”
for Enabling Full-System Multiprocessor Deterministic
Replay,” inISCA, June 2003.

[26] M. Xu, R. Bodik, and M. D. Hill, “A Regulated Transitive
Reduction (RTR) for Longer Memory Race Recording,” in
ASPLOS, Oct. 2006.

[27] M. V. Zelkowitz, “Reversible Execution,”Communications of
the ACM, vol. 16, Sept. 1973.

