Accurate and Efficient Filtering for the Intel Thread
Checker Race Detector

Paul Sack
Department of Computer
Science
University of lllinois at
Urbana-Champaign

paulsack@cs.uiuc.edu

Brian E. Bliss,
Zhigiang Ma, and
Paul Petersen
Intel Corporation

{brian.e.bliss,
zhigiang.ma,

Josep Torrellas
Department of Computer
Science
University of lllinois at
Urbana-Champaign

torrellas@cs.uiuc.edu

paul.petersen}@intel.com

ABSTRACT

Debugging data races in parallel applications is a difficult
task. Error-causing data races may appear to vanish due
to changes in an application’s optimization level, thread
scheduling, whether or not a debugger is used, and other
effects. Further, many race conditions cause incorrect pro-
gram behavior only in rare scenarios and may lie undetected
during software testing.

Tools exist today that do a decent job in finding data
races in multi-threaded applications. Some data-race de-
tection tools are very efficient and can detect data races
with less than a 2x performance penalty. Most such tools,
however, do not provide enough information to the user,
require recompilation, or impose other usage restrictions.
Other tools, such as the one considered in this paper (In-
tel’s Thread Checker), provide users with plenty of useful
information and can be used with any application binary,
but have high overheads — often over 200x. It is the goal of
this paper to speed up Thread Checker by filtering out the
vast majority of memory references that are highly unlikely
to be involved in data races. In our work, we develop filters
that filter 90-100% of all memory references from the data-
race detection algorithm, resulting in speedups of 2.2-5.5x,
with an average improvement of 3.3x.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Testing tools

General Terms

Data-race detection

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for

Debugging data races is a difficult task. Even when pro-
grammers know the symptoms of a data race, it can be dif-
ficult to zero-in on the cause. Erroneous behavior may only
manifest itself under certain conditions. Changing compiler
optimization levels, using a debugger, or incurring slightly
different thread scheduling by the OS can change the thread
interleaving such that a bug’s symptoms vanish. Further,
exhaustive software testing can miss some races that can
appear under extremely rare circumstances, but can still be
important in critical applications.

For these reasons, developers increasingly turn to tools
that use data race-detection algorithms to find race condi-
tions in multi-threaded applications. Such tools ease data
race debugging, since they can pinpoint two conflicting mem-
ory references to the same memory location that are not
properly ordered with synchronization.

There are two common types of algorithms used in finding
data races in multi-threaded applications. They are lockset-
based algorithms, such as Eraser [13], and vector clock-based
algorithms, such as RecPlay [12] and Intel’s Thread Checker
[5]. Some algorithms use a hybrid approach, such as Race-
Track [16] and Choi et al [2].

Such tools can uncover many data races that otherwise
would lie undetected or would be difficult to debug. Many
such tools have reasonable overheads — on the order of 2x
slowdowns — but do not provide the user with much useful
information or have limited usage models. Other tools, such
as the one considered in this paper (Intel’s Thread Checker),
provide the user with an abundance of useful information for
debugging and have few usage constraints, but have high
performance costs, as we will see.

In this work, we develop an integrated filter for Thread
Checker that can cut the cost of data race-detection with-
out sacrificing detection accuracy. The filter that we de-
velop filters, on average, 98% of the memory references in
the SPLASH-2 benchmarks without missing any data races.
This improves the performance of Thread Checker by an
average of 3.3x, or a maximum of 5.5x.

In section 2, we introduce and compare the two common

personal or classroom use is granted without fee provided that copies aredata-race detecting algorithms. We then focus on Intel’s
not made or distributed for profit or commercial advantage and that copies Thread Checker and examine its sources of overhead. In
bear this notice and the full citation on the first page. To copy otherwise, to section 3, we present an overview of our filter design. In
republish, to post on servers or to redistribute to lists, requires prior specific section 4, we explain how it is implemented. In section 5,

permission and/or a fee.
ASID’06October 21, 20006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-576-2$5.00.

we discuss our experimental setup. In section 6 we present
our evaluation. In section 7, we discuss related work, and

we conclude in section 8.

2. MOTIVATION

A conflicting access pair consists of two memory accesses
by two different threads to the same address, at least one
of which is a store. A data race occurs when there is a
conflicting access pair and the two accesses are not ordered
using a synchronization operation, such as obtaining a lock
or creating a thread.

2.1 Lockset algorithm

The lockset algorithm is based on the idea that all accesses
to a given shared variable should be protected by a com-
mon set of locks. Strictly speaking, it does not detect data
races, but detects violations of a locking discipline. A lock-
ing discipline is a consistent set of locks held while access-
ing a shared variable. The locking discipline ensures that a
shared variable is either always read and written while hold-
ing a common lock, or only read. It operates by intersecting
the currently-held set of locks (lockset) with the saved lock-
set. If the intersection is null, then the locking discipline
has been violated, and a diagnostic message is reported to
the user. Otherwise, the intersected lockset is saved. Eraser
[13] is a commonly-used lockset-based data-race detector.

One problem with this algorithm, as described above, is
in shared-variable initialization. A common programming
idiom is to have a main thread allocate and initialize a data
structure and then spawn child threads that access the struc-
ture in some manner. The initialization is often done with-
out holding a lock before the child threads are created —
thread creation synchronizes the conflicting accesses by the
main thread and the child threads. When a child thread
accesses the data structure, it is observed that the currently
held lockset and the intersection of the lockset during ini-
tialization, i.e., the empty set, is zero, and thus the locking
discipline has been violated and a diagnostic is output.

Another trivial shortcoming is the case of a shared vari-
able that is initialized by the main thread before child threads
are created, and then only read. An example is a variable
containing the PID of the application. In this case, the
variable is again accessed without holding any locks and a
violation is detected — even though it is only read.

To solve this scenario, Eraser employs the state machine
illustrated in Figure 1. Variables are either Uninitialized,
Private, Shared Read-Only, or Shared Read-Write. Upon
the first access to a variable (R1, W1), the variable enters
the Private State. From this state, upon further accesses
by the same thread (R1, W1), the variable remains in the
Private state. Should another thread read the variable (R’),
the variable enters the Shared Read-Only state. Should an-
other thread write (W’) the variable, the variable enters the
Shared Read-Write state. Finally, from the Shared Read-
Only state, a write by any thread (W) takes the variable
to the Shared Read-Write state, but a read by any thread
(R) does not change the state. Lockset analysis is only per-
formed in the two shared states, and locking-discipline vi-
olations are only reported in the final Shared Read-Write
state. The addition of this state machine reduces the num-
ber of false positives Eraser reports.

Unfortunately, the lockset algorithm cannot handle appli-
cations that use other forms of synchronization, such as forks
and joins, semaphores, or barriers. This is why vector-clock
based algorithms, such as RecPlay [12] and Intel’s Thread

Figure 1: Eraser state machine.

Checker [5], are used for finding races in applications which
use other forms of synchronization.

2.2 Vector clock algorithm

Vector clocks are complex in comparison to locksets. It
is this complexity that allows them to handle all kinds of
synchronization. This also makes vector clock algorithms
more difficult to understand.

In vector clock algorithms, each thread executes segments.
A segment is defined as all the instructions executed by a
thread between synchronization operations.

A simple definition of a vector clock is that it is a type of
clock that allows one to specify an ordering amongst these
segments. The vector clock specifies whether, given two seg-
ments a and b running on different threads, a precedes b, b
precedes a, or if a and b overlap.

Each thread has a vector clock that it uses to order its
segments with respect to the other threads’ segments. Fur-
ther, each variable has two vector clocks, to keep track of
the last time each thread read it and wrote to it.

Data race detection using vector clocks is simple. Each
time a thread reads from a variable, it checks that the thread’s
vector clock is ordered with respect to the variable’s write
vector clock — which records information on the last write to
the variable by all threads. Each time a thread writes to a
variable, it checks that the thread’s vector clock is ordered
with respect to the variable’s read and write vector clocks —
which record information on the last read and write to the
variable, respectively, by all threads. If two vector clocks
are not ordered, we have a race — the conflicting access pair
could have occurred in either order.

The use of vector clocks incurs an enormous space over-
head. For a system with n threads, each vector clock must
contain n clock fields, and each field might be 4 bytes wide
or more. If threads are dynamically created and destroyed,
n can grow to be very large.

We refer the reader to the literature [4, 9, 12] for further
details on the operation of a vector clock-based data race
detector and some variations and optimizations. A good
explanation of vector clocks is found in [7]. A detailed un-
derstanding of vector clock algorithms is not necessary for
following the rest of this paper.

2.3 Overheads of Intel's Thread Checker

Some data race detectors, including Intel’s Thread Checker
[5], are quite slow. As seen in Figure 2, Thread Checker
has an average slowdown of 233x in the SPLASH-2 appli-
cations with 4 threads running on a 4-processor machine,
and a maximum slowdown of 485x. There are many reasons
why Thread Checker is slower than some competing data
race detectors. One cause is that Thread Checker provides
the call stack for the two racing memory references. Main-
taining the call stack can be very time-consuming, but is
invaluable in providing programmers with context informa-
tion to aid in debugging. Secondly, the reported slowdowns
are relative to compiled, highly-optimized, well-parallelized
C code — not code running in a virtual machine or managed
runtime environment. Many race-detection optimizations
possible for type-safe managed languages do not work with
binary code written in non-type-safe languages, such as C.
Third, Thread Checker works with virtually any Linux or
Windows binary application with dynamically-loaded and
unloaded libraries.

The central Thread Checker vector clock algorithm re-
quires the following information for each reference:

e the address of the reference
e whether it is a load or store
e whether it is a synchronization operation

the line of code

the call stack

Overhead in Thread Checker

500
|

W Instrumentation Only
O Full

o0

Ocean Raytrace Water-sp Water-n2 Radix Cholesky ~ LU Radiosity ~Mean

Slowdown (x)
300 400
L L

200
I

100
I

Figure 2: Time overheads in Thread Checker. The
data correspond to 4-processor runs.

While each thread in an application is running, program
instrumentation generates this information and puts it into
a thread-private buffer. When the buffer is full or a synchro-
nization operation is encountered, a global lock is obtained,
and the vector clock algorithm runs. The buffering is done
by each thread in parallel without a lock, whereas the vector
clock algorithm is serialized with a global lock.

As can be seen in Figure 2, instrumentation alone causes
a 22x slowdown, on average. This is found by running

Thread Checker with the vector clock algorithm disabled
but with instrumentation enabled. The full algorithm with
instrumentation incurs a 233x slowdown, on average. Con-
sequently, it is better to focus on optimizing the execution
of the vector clock algorithm (the white section of Figure 2),
rather than on reducing the instrumentation cost. Moreover,
since while one thread has the global lock and is perform-
ing the vector clock algorithm, all the other threads can
continue executing instructions and buffering memory ref-
erence information, it is likely that much of the instrumen-
tation overhead is subsumed by the vector clock algorithm
overhead. In other words, if we reduced the black section
of Figure 2 by reducing the instrumentation cost, it is likely
that the white section would grow to neutralize any change.

There are two main approaches to reducing the execution
time of the vector clock algorithm. The first one is to par-
allelize the algorithm (i.e., parallelize the critical section).
The second one is to reduce the amount of work done by
the algorithm (i.e., reduce the size of the critical section).
While both approaches are potentially good, the first one is
likely to be harder and, in addition, not very effective when
the algorithm runs with a small number of processors like in
our experiments. Consequently, in this paper, we focus on
the second approach. We develop a filter that can greatly
speed-up the critical section and, therefore, be effective for
single-processor systems as well as for large multiprocessor
systems.

2.4 Our approach

In this work, we take the state machine from Eraser and
combine it with two other simple filters to construct a filter
for the vector clock-based algorithm. With this, we hope to
eliminate the vast majority of memory references that need
to be processed by the vector clock algorithm. We will elim-
inate those references that are not likely to be involved in
data races. If our filter can filter many references without
missing many data races, the algorithm can reduce the enor-
mous overhead of data-race detection to a more manageable
level.

Figure 3 shows the interactions of the various components
in Thread Checker and where our filter fits in. In the ex-
ample of the figure, the instrumentation in the application
thread sends three references to the filter. The filter fil-
ters two of the three references and passes one reference to
Thread Checker.

In the next section, we explore the design alternatives for
constructing a parallel filter for Thread Checker or any other
data-race detector.

3. ACCURATE & EFFICIENT FILTERING

In this section, we elaborate upon the Eraser state ma-
chine and present our filter designs.

3.1 Is animperfect filter okay?

It is commonly held that imperfect filtering — filtering ref-
erences that have even a remote chance of being involved in
a data race — is inherently a bad idea, since it might cause
a race condition to go undetected. The argument is that a
good data-race detector should not miss any data races.

What we have found is that large, long-running appli-
cations simply exhaust the memory available in common
computer systems. Thread Checker imposes a 20x memory
overhead, due to storing vital debugging information for all

Application Thread

Original code
Thread Checker

Filter

Instrumentation

Original code

Instrumentation

Original code

Instrumentation

Figure 3: The proposed architecture. In this ex-
ample, the instrumented thread sends 3 references
to the filter. 2 are filtered, and 1 is passed to the
Thread Checker vector clock algorithm.

memory references. Therefore, Thread Checker must peri-
odically deallocate some of this information under memory
pressure if Thread Checker is to be useful at all.

Further, all dynamic data-race detectors, at best, can find
all the data races in one dynamic execution of an application.
They cannot prove that no other data races can ever occur —
e.g., code not executed in one particular run could unsafely
access shared data.

Finally, users are often unwilling or unable to wait for
Thread Checker to do a test run that takes 200 times as
long as a normal run. Common practice is to reduce the
input data set or tweak other application parameters to get
an acceptable run time — thus potentially missing some of
the data races that would occur in a normal run.

There is also some precedent for our viewpoint. Race-
Track [16], a promising data-race detector for the .NET
managed runtime environment, uses a form of imperfect
filtering to reduce overheads — namely, only accesses to a
subset of array members are processed. An adversary could
easily create a data race that would elude RaceTrack or our
filters, but catching adversaries is not the purpose of practi-
cal data-race detectors. A practical, imperfect tool is better
than an impractical, perfect tool.

In light of all this, we feel that optional memory-reference
filtering, even if imperfect, is a net benefit for most users.
We now elaborate on how we do this.

3.2 Filtering useless references

The vast majority of memory references will not be in-
volved in a data race. Further, it has been our experi-
ence that most data races that occur in a program recur
many times. Thus, it seems prudent to filter unneeded ref-
erences in the instrumentation and buffering stages before
they reach the slow vector clock-based data-race detection
algorithm.

Variables that are only used by one thread cannot be in-

volved in a data race. Therefore, stack variables cannot be
involved in a data race in most programs. Moreover, vari-
ables residing in the heap or the data segment that are only
used by one thread should be filtered. In addition, variables
that are only read by multiple threads should be filtered as
well. Finally, variables repeatedly accessed within or be-
tween critical sections need only be passed through once.

3.3 State machine choices

We propose to use three filters to filter away references
unlikely to be involved in data races.

3.3.1 Stack filter

First, we filter away stack references. This is a low-overhead
filter — the address of the memory reference is compared
against the stack base and limit addresses, and then filtered
or passed through. Code in Thread Checker checks if one
thread accesses another’s stack. In this case, the user is
notified and this filter can be disabled.

For most applications — those that do not have cross-
thread stack accesses — this filter cannot cause any data
races to be lost and is very efficient.

3.3.2 Duplicate filter

Next, we filter duplicate references in segments. The first
load and store references to a variable in each segment by
a thread are passed through, while subsequent loads and
stores to the same variable are filtered.

The list of addresses already accessed in the current seg-
ment is kept in a simple per-thread table. Further, addresses
involved in prior data races are marked in the table, and
all future accesses to those addresses will not be filtered,
whether duplicate or not. The actual operation is discussed
later.

This filter can only cause Thread Checker to lose dupli-
cate data races. A duplicate data race is a data race that
involves the same variable, threads, and thread segments
as an already-detected data race. Losing a duplicate data
race may make the data-race causing bug more difficult to
diagnose, but will not cause any synchronization bugs that
would otherwise be detected to lie undetected.

We have found duplicate data races to be very common.
Consider a critical section in which a shared variable is read,
then written. If this critical section races with an unsyn-
chronized write to the shared variable, both the read and
the write will be involved in duplicate data races, but only
one data race needs to be reported.

3.3.3 FSMfilter

The stack and duplicate filters catch most of the useless
memory references most of the time, but we have found some
cases in which it is useful to add a third, final filter.

Our approach for this filter is to leverage the Eraser state
machine used to reduce false positives in the Eraser algo-
rithm, and apply it to Thread Checker for a different pur-
pose — filtering memory references.

In the following section, we will describe the specific or-
ganization of our filter, but for now let us first consider the
state machine behind it.

3.3.3.1 Eraser state machine.
In the Eraser state machine, each variable starts in the
Uninitialized state. As show in Figure 1, after the first ac-

cess, the variable enters the Private state. If the same thread
continues to access the variable, the variable remains in the
Private state.

If another thread reads the variable, it enters the Shared
Read-Only state. In the Shared Read-Only state, locksets
are intersected and saved, but data races are not reported.
If another thread writes to the variable, it enters the Shared
Read-Write state. It is in this state that data races are
reported.

3.3.3.2 Our state machine.

We base our filter upon the Eraser state machine. We
filter references in the Private state and in the Shared Read-
Only state. We pass through references in the Shared Read-
Write state. The shared variables that are read and written
and could be involved in data races will quickly transition to
the Shared Read-Write state and not be filtered. Variables
that are privately used by one thread will stay in the Private,
filtered state. Variables that are shared but only read will
stay in the Shared Read-Only, filtered state.

Further, we also pass through the initial references that
cause a state transition from the Uninitialized state to the
Private state, and from the Private state to the Shared
Read-Only state. This has a minimal impact on filter rate,
but is valuable in detecting data races that involve some
initial references to a variable.

4. |IMPLEMENTATION ISSUES

In this section, we describe the organizations of our mem-
ory reference filters.

4.1 Stack filter

The stack filter is the simplest filter and has the lowest
overhead, so we apply it first. It compares the memory
reference address with the stack base and limit addresses. If
it falls within the range, the reference is filtered; otherwise,
it is passed through.

4.2 Duplicate filter

This filter requires a table lookup, and therefore is slower
than the stack filter, so it is applied next. Each thread
maintains its own duplicate filter table. We chose to use a
16k-entry filter table organized as a direct-mapped cache.
Each entry has several fields:

e The address of the reference

e The size of the access (byte, word, double-word)
e The type of access (read or write)

e The segment ID

The 16k-entry table requires a 14-bit index. The low-
est 2 bits of the full virtual address of the reference are
XORed with the next-lowest 14 bits to form an index. This
is because most accesses are at the word or double-word
(floating-point) granularity and, therefore, the lowest 2 bits
are less useful.

If the address, size, type, and segment ID match, then an
identical reference has already been processed in this seg-
ment and the reference can be safely filtered away. If the
address matches but the other fields do not, the entry is aug-
mented and the reference is passed through. If the address

does not match, the address and the fields are filled in, and
the reference is, again, passed through.

Duplicate references are often generated by different static
instructions. It can be useful to the programmer to see
the different lines of source code involved in duplicate races.
Therefore, we have added a feedback loop from the data-race
detector to the duplicate filter. It uses an extra subfield
in the access-type field to mark the entry as having been
involved in a data race. Subsequent matches to this entry
will never be filtered.

4.3 FSM filter

This filter uses a table shared by all threads with some
synchronization, and, therefore, is the slowest. It is applied
last.

The filter requires two fields for each variable:

e The state the variable is in. This uses 2 bits, since
there are 4 states — Uninitialized, Private, Shared Read-
Only, and Shared Read-Write.

e The thread ID for the Private state. We have chosen
14 bits for this, such that each entry requires two bytes
of storage.

An efficient implementation must work with memory ad-
dresses and not variable names. The filter, as input, takes
a 32-bit memory address and the size of the access. One
possibility is to filter at the byte level. In this case, for an
8-byte double-precision floating-point access, 8 filter entries
would need to be checked. However, such a solution would
be slow and would consume too much memory.

Suppose, instead, that we choose to filter at the 32-bit
(4-byte) block level:

e When there are variables used that are smaller than
the chosen block size, such as bytes, there will be alias-
ing within a block. If one byte within a 4-byte word
is private to one thread, and another byte in the word
is private to another thread, our filter may transition
to the Shared Read-Write state and pass through ref-
erences that are not necessary. We are underfiltering.

e When there are variables used that are larger than the
chosen block size, such as double-precision floating-
point numbers, we will have to access two entries to
ensure that we do not overfilter. This will ensure that
we do not filter the case when, for example, there is
a race between a store to the second half of a double
and a load to the entire double.

Intuition and experimentation has shown that a 4-byte block
size is optimal.

We also found that a 4-way set associative table with LRU
had the best tradeoff between filtering rate and overhead.
We chose to use a 1M-entry table, which covers 4 MB of
application data at a time. The table is indexed and tagged
like a set-associative cache, and has an actual footprint of
about 4 MB.

The common path through the filter is when the most-
recently used entry in the set matches the referenced ad-
dress, and no updates are required to the entry. In this
case, we do not have to update the table and do not have to
do any synchronization operations.

If there is not a match on the most-recently used entry or
the most-recently used entry requires an update, an atomic

fetch-and-swap operation is used to write a special value to
the LRU variable, locking the set. Then the entry is up-
dated, (if necessary). Finally, the LRU variable is updated,
implicitly unlocking the set.

5. EXPERIMENTAL SETUP

We use the SPLASH-2 applications in our evaluation [14].
All applications were run with 4 threads on 4 processors,
using the standard data set. Statistics are collected during
the entire run.

The performance measurements are obtained on a 4-way
2.5 GHz Pentium 4 workstation. Filtering statistics are col-
lected by running each application three times for each con-
figuration; performance results are collected by running each
application nine times for each configuration. All figures
show 95% confidence limit segments calculated using the
Student’s t-statistic. However, it is difficult to perceive such
confidence limit segments in the graphs showing filtering
rates, as filtering rates vary very little from run to run.

Finally, each application is run in Thread Checker with
and without our filters to see how data race detection is
affected. We are interested in determining whether or not
using the filters reduces the number of data races reported
to the user. We compare the number of data-race bugs re-
ported with and without the filters.

A data-race causing bug usually results in many reported
data races. Thread Checker collapses all races that involve
the same pair of lines of code and are of the same type
(read-write, write-write, or write-read) into one diagnostic
message. A diagnostic message from Thread Checker re-
ports the pair of lines of code, the call stack, and the type
of data race.

6. EVALUATION

In our evaluation, we examine the filtering effectiveness
of our technique, its performance impact, and its impact on
data-race detection capability.

6.1 Filtering effectiveness

Figure 4 shows the average filtering rate (i.e., the frac-
tion of references that are eliminated) for each application
for different filters: the stack filter; the stack and duplicate
filters together; and the stack, duplicate, and FSM filters
together.

From the figure, we see that the stack filter is clearly ef-
fective. On average, it filters out over 50% of all references.
Further, it has a very low implementation cost and, in most
applications, cannot cause Thread Checker to miss any race
conditions.

When the duplicate filter is used after the stack filter, the
average filtering rate increases to 90%, and when all three
filters are used, the average filtering rate is 98%. It is ques-
tionable whether an additional 8% filtering rate justifies the
use of the FSM filter — the FSM filter is the only filter of
the three that can cause data races to be missed. However,
in some applications, such as Ocean, it is indeed quite ben-
eficial: it increases the filtering rate from 68% to 97%.

Figure 5 shows the incremental filtering obtained with
each filtering scheme. The first bar shows the percentage of
references filtered by the stack filter; the second bar shows
the percentage of references passed through by the stack fil-
ter that are filtered by the duplicate filter, and the third bar

Filtering (%)

100
|

60
I

20
I

2

o |

<
@ Stack
m|_+Dupe
B +FSM

o

cholesky ~ fit [ocean radiosity radix raytrace water-n2 water-sp amean

Figure 4: Filtering effectiveness of different filter
combinations.

shows the percentage of references passed through by the
stack and duplicate filter that are filtered by the FSM filter.

For some applications, such as Water-n2 and Water-sp,
the FSM filter does not filter much, but these applications
already have nearly 100% filtering rates, so it is of little con-
sequence. For other applications, such as Ocean and Ray-
trace, the FSM filter filters 90% or more of references, and is
very useful, increasing combined filtering rates from 70-80%
to nearly 100%.

Incremental filtering (%)

100
|

@ Stack
B Dupe
W FSM

o J

cholesky fft u ocean radiosity radix raytrace water-n2 water-sp amean

Figure 5: Incremental filtering effectiveness.

6.2 Performance

Figure 6 shows the Thread Checker speedups obtained
with filtering, normalized to the base case of not using any
filtering. On average, stack filtering provides a 1.5x speedup,
stack and duplicate filtering provides a 2.6x speedup, and
the combination of all three filters provides a 3.3x speedup.
The three filters together speed-up individual applications
from 2.2x to 5.5x.

Thread Checker has many sources of overhead. Logi-
cally, if we obtain an over-2x speedup with filtering, then
the data-race detection algorithm must be the largest con-
tributor. But with 90%+ filtering rates, we do not reap a

10x speedup. This is because there are many other over-
heads in Thread Checker that become more dominant as
the overhead of the date-race detection algorithm becomes
less dominant. These include program instrumentation, call
stack generation, deadlock detection, and other fixed costs.
Nonetheless, an average speedup of 3.3x and up to 5.5x
can be obtained using a straightforward series of filters.

Speedups (x)

O Original
© 7| B stack
| +Dupe
m +FSM

Eni

cholesky ~ fit water-sp lu

ocean radiosity radix raytrace water-n2 hmean

Figure 6: Thread Checker speedups obtained with
filtering.

6.3 Data-race detection

Thread Checker detects 12 data races among the SPLASH-
2 applications. The one in Ocean can be described as truly
benign. Most of the others will be benign under some mem-
ory models and racy under others. Most of these races were
due to hand-coded synchronization routines which did not
use memory fences or library synchronization methods.

The results when Thread Checker is used with all three
filters combined are summarized in Table 1. For every ap-
plication we tested, Thread Checker detected identical sets
of races whether or not filtering was enabled.

The benign data race in Ocean was a redundant assign-
ment, wherein a shared variable was initialized by every
thread to the same value and never updated again. The ap-
plications were coded such that it was simple for a program-
mer to see that this is what was happening, but a data race
detector, even with inter-procedural analysis, could never
prove it.

The table also shows that, without filtering, the overhead
of using Thread Checker varies from a slowdown of 90x to
485%, with an arithmetic mean of 233x. With our filter,
slowdowns are reduced to 28-163x, with an arithmetic mean
of 69x.

We also see that our filters can filter 98% of references
in SPLASH-2 on average and miss no malignant data races.
Still, since there is a small possibility that a data race could
lie undetected when the FSM filter is used, we would rec-
ommend that users perform a final test run with that filter
disabled.

7. RELATED WORK

As mentioned early in the paper, there are two classes of
data-race detection tools. Tools in the first class, such as

Races [Filter | Original | Overhead
Application (Filter/ Rate | Overhead | w/ Filter

No Filter) | (%) (Times) (Times)
Cholesky 1/1 99 239 82
FFT 0/0 92 90 41
LU 1/1 97 428 128
Ocean 1/1 97 90 28
Radiosity 5/5 99 485 163
Radix 2/2 99 222 56
Raytrace 2/2 98 172 53
Water-n? 0/0 99 189 39
Water-sp 0/0 99 183 34
Average — 98 233 69

Table 1: Characterizing the impact of the three fil-
ters combined.

Eraser [13], are based upon detecting violations of a locking
discipline, where a locking discipline refers to a consistent
set of locks used to access a given shared variable during
multi-threaded execution.

The second class, such as Thread Checker [5], are based
upon vector clocks. Vector clocks create an ordering among
thread segments based upon synchronization events, such
as locks, thread creation, semaphores and barriers. Vector
clock-based data-race detectors detect when two conflicting
accesses are made to a shared variable by two unordered
thread segments.

There is much work based on vector-clock algorithms [3,
11, 12, 15] for debugging and deterministic replay. One of
the seminal works on using vectors clocks for race detection
is by Netzer and Miller [9].

Sequential data race detectors, such as [1] and [8], only
guarantee finding the first race in an application. Its us-
age model requires its users to fix the first data race in
an application before finding the next. Many users may
not be willing to fix benign data races. Others may want
to solve simpler data races first, and then move on to the
more complex ones. Finally, programmers may not have ac-
cess to the source code for all the libraries they use; they
simply are unable to fix the first data race if it occurs in
library code. In general, however, these algorithms have
lower overhead than Thread Checker. An interesting exten-
sion is Nondeterminator-3 [6], a sequential data-race detec-
tor which runs in parallel.

Recently, there has been some work on combining lockset
and vector-clock based algorithms. In [10], locksets are used
to detect data races in Java applications, and vector clocks
are used to eliminate many false positives. RaceTrack [16]
uses locksets to find potential data races and vector clocks
to see if the potentially racing accesses are properly ordered
or not.

There is little work relating to front-end filtering for data-
race detection algorithms. In [2], a cache similar to our
duplicate filter is used to improve performance. Our work
evaluates three different kinds of filters and characterizes
their effectiveness. We believe that our filters could be ap-
plied to many other data-race detectors to improve their
performance.

8. CONCLUSIONS AND FUTURE WORK

Data-race detectors such as the Intel Thread Checker are
useful in helping programmers debug difficult race condi-

tions. Unfortunately, as we have seen, there can be immense
slowdowns of up to 485x, with an average slowdown of 233x.

In this work, we develop a stack, duplicate, and FSM fil-
ter which, on average, filter 98% of all references and do
not miss any of the 12 data races Thread Checkers finds in
the SPLASH-2 benchmarks. This effects an average 3.3x
speedup, because other overhead sources become the limit-
ing factors.

We believe that the 69x slowdown remaining after using
our filters is still too much. We have several ideas on how
to improve the filters. One idea is to use feedback infor-
mation from the vector clock algorithm which might allow
us to safely downgrade some entries in the FSM filter from
the Shared Read-Write state to the Private or Shared Read-
Only state. There are also some optimizations that we have
considered that might reduce the overhead of the FSM fil-
ter without impacting its filtering effectiveness much. How-
ever, even close to 100% filtering will not provide much more
speedup.

Much work can be done to improve the other overhead
sources in Thread Checker, such as the instrumentation,
the call-stack generation, and the serialization of the core
algorithm. Our work has substantially widened the biggest
bottleneck to Thread Checker performance, without which
other optimizations would have little benefit.

9. REFERENCES

[1] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall,
and A. F. Stark. Detecting data races in Cilk
programs that use locks. In Symposium on Parallel
Algorithms and Architectures, 1998.

[2] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,

V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In International Symposium on
Programming Language Design and Implementation,
2002.

[3] J.-D. Choi and H. Srinivasan. Deterministic replay of
Java multithreaded applications. In SIGMETRICS
Sympositum on Parallel and Distributed Tools, pages
48-59, 1998.

[4] C. Fidge. Logical time in distributed computing
systems. Computer, 24(8):28-33, 1991.

[5] Intel Corporation. Intel Thread Checker.
http://www.intel.com/
support/performancetools/threadchecker.

[6] T. C. Karunaratna. Nondeterminator-3: A provably
good data-race detector which runs in parallel. MIT
CSAIL report, 2005.

[7] F. Mattern. Virtual time and global states of
distributed systems. In International Workshop on
Parallel and Distributed Algorithms, pages 215—-226,
1989.

[8] J. Mellor-Crummey. On-the-fly detection of data races
for programs with nested fork-join parallelism. In
Supercomputing, 1991.

[9] R. H. B. Netzer and B. P. Miller. Improving the
accuracy of data race detection. International
Sympostum on Principles and Practice of Parallel
Programming, 26(7):133-144, 1991.

[10] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In International Symposium on

Principles and Practice of Parallel Programming,
pages 167-178, 2003.

M. Prvulovic and J. Torrellas. ReEnact: Using
thread-level speculation mechanisms to debug data
races in multithreaded codes. In International
Symposium on Computer Architecture, pages 110-121,
2003.

M. Ronsse and K. D. Bosschere. RecPlay: A fully
integrated practical record/replay system. ACM
Transactions on Computer Systems, 17(2):133-152,
1999.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391-411, 1997.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and

A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In International
Symposium on Computer Architecture, pages 24-36,
1995.

M. Xu, R. Bodik, and M. D. Hill. A “Flight Data
Recorder” for enabling full-system multiprocessor
deterministic replay. In International Symposium on
Computer Architecture, pages 122-135, 2003.

Y. Yu, T. Rodeheffer, and W. Chen. Racetrack:
Efficient detection of data race conditions via adaptive
tracking. In International Symposium on Operating
Systems and Principles, 2005.

