An Updated Evaluation of ReCycle

Abhishek Tiwari and Josep Torrellas
Department of Computer Science
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

WDDD Workshop
Beijing, June 2008
What is ReCycle? [Tiwari ISCA07]

- **Context:**
 - Process variation creates unbalance in delay of pipeline stages
 - Left unchecked, clock period is the delay of slowest pipeline stage
- **ReCycle proposed in ISCA 2007:**
 - A framework for comprehensively applying *cycle time stealing* to balance stage delays under process variation
 - Clock period is close to *average stage delay* of slowest pipeline loop
Effect of Process Variation

Pipeline Without Variation

Effect of Variation

Pipeline After Variation (No ReCycle)

Pipeline After Variation (With ReCycle)

Period

\[T_i \]
for all \(i \)

\[\text{Max}(T_i) \]

\[\text{Avg}(T_i) \]
Cycle Time Stealing

Clock to Initial Register

Clock to Final Register (No ReCycle)

Clock to Final Register (With ReCycle)

D_{min} D_{max} T_{setup} T_{hold}

T_{skew}
Timing Constraints

Setup constraint:
\[\partial_f - \partial_i + T_{cp} \geq D_{max} + T_{setup} \]

Hold constraint
\[\partial_f - \partial_i \leq D_{min} - T_{hold} \]

- Map to a graph
- Linear Program formulation
 - The optimal *skews* in all the pipeline registers
 - The *minimum clock period* for the processor
 - The *critical loop*
Original ReCycle Evaluation

- Assigns one cycle to the feedback path of each pipeline loop
- It transforms tight, single-cycle loops into two-cycle loops
- Can move time between feedback path and pipeline stage → one-cycle loops appear less critical
Updated Evaluation

- Do not assign one cycle to feedback path
- Feedback path consumes a fraction of cycle time assigned to last stage in loop
- Five single-cycle loops now exist in the same pipeline
Pipeline Structure
Timing Constraints

• Old constraints for feedback path:
 \[
 \delta_i + T_{\text{feedback_delay}} + T_{\text{setup}} \leq T_{\text{CP}} + \delta_f \\
 \delta_i + T_{\text{feedback_delay}} \geq \delta_f + T_{\text{hold}}
 \]

• Updated constraints for last stage+feedback path:
 \[
 \delta_i + T_{\text{stage_delay}} + T_{\text{feedback_delay}} + T_{\text{setup}} \leq T_{\text{CP}} + \delta_f \\
 \delta_i + T_{\text{stage_delay}} + T_{\text{feedback_delay}} \geq \delta_f + T_{\text{hold}}
 \]
Variation Model

• Process variation model same as in original ReCycle
 – Model within-die variation in Vth and Leff
 – Equally divided into
 • Systematic: Correlated normal distribution
 • Random: Uncorrelated normal distribution
 – All experiments for 10,000 pipelines

• Distribution of critical paths in a stage is different than before:
 – Original ReCycle: number of critical paths in a stage is prop
to the area of the stage
 – Here: Critical path distribution and timing from VARIUS
 [Sarangi08]
Critical Pipeline Loops

Single-cycle loops with logic

Single-cycle loops with wires+logic

Long loops

Tiwari and Torrellas
An Updated Evaluation of ReCycle
Comparison: Critical Pipeline Loops

Tiwari and Torrellas
An Updated Evaluation of ReCycle
Frequency vs Logic Depth

ReCycle improves frequency by avg 6% over Var

ReCycle recovers 40% of the frequency lost to variation

Since single-cycle loops are often critical → ReCycle is less effective in this pipeline model
Improving Frequency with Donor Stages

- Empty stage added to the Critical loop
- If activated, it generates additional slack that is donated to other stages in the loop
 - Average delay/stage in the loop decreases $\rightarrow f$ increases
 - IPC decreases
Donor Algorithm

- Identify critical loop using ReCycle algorithm
- Enable donor stage in the critical loop
 - Measure IPC impact on workload
- Repeat for the new critical loop
- For single-cycle loops:
 - Stop. Cannot add donor stage

- Result: On average, Donor algorithm has negligible performance impact
Modified Donor Algorithm

- Apply original Donor algorithm
- For single-cycle loops:
 - Do not add donor stage
 - Apply Forward Body Bias (FBB) to speed up
 - Move to the next critical loop
- Stop when 30W/proc reached or no more perf improvement
Number of Donor Stages

Tiwari and Torrellas
An Updated Evaluation of ReCycle
Number of Stages with FBB

- Typically apply FBB to 3 stages (all single-cycle loops)
- Worst case: all 5 single-cycles stages receive max FBB → increase total power/proc by 7%
Performance

- ReCycle is 4% faster than Var [9%]
- ReCycle recovers 40% of perf lost to variation [64%]
- ReCycle+Donor+FBB is 9% faster than Var [15%]
- ReCycle+Donor+FBB recovers 90% perf lost to var [110%]
Performance

Tiwari and Torrellas
An Updated Evaluation of ReCycle
Conclusions

• Redone the evaluation of ReCycle with more realistic
 – Pipeline model: single cycle loops
 – Critical path model
• ReCycle is less effective with the new model due to single cycle loops
• However, the benefits are still significant
 – ReCycle is 4% faster than Var. Recovers 40% perf.
 – ReCycle+Donor+FBB is 9% faster than Var. Recovers 90% perf.
An Updated Evaluation of ReCycle

Abhishek Tiwari and Josep Torrellas
Department of Computer Science
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

WDDD Workshop
Beijing, June 2008