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Motivation

● Sparse Matrix-Vector Multiplication (SpMV)

○ An essential kernel

● Used in many different domains: 
○ Graph processing and linear solvers

● Low-locality memory accesses

● Widely different behavior based on the sparse matrix used
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The Challenge

● Numerous SpMV methods are proposed

● SpMV methods’ performance is hard to predict

● Different methods work best for different classes of sparse matrices
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How can we choose the best method for a given sparse matrix?
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Our Contribution: WISE

● WISE: An ML-based framework to predict the best SpMV method for a 

given sparse matrix

○ Uses a novel feature set  that models size, locality, and skew characteristics

○ Considers a wide range of SpMV methods (i.e., optimizations)

○ Attains a 2.4x speedup on average over state-of-the-art Intel MKL
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SpMV Method Space
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Packing: Enables vectorization

Row Frequency Sorting (RFS): Zero padding 

minimization to improve vectorization

Column Frequency Sorting (CFS): Places 
frequently accessed elements of the input 
vector together

Segmenting: Improves last-level cache use   

Packing
RFS

CFS
Segmenting

SELLPACK
Sell-c-σ

Sell-c-R

LAV-1Seg LAV

All methods use vectorization
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No One-Size-Fits-All Solution

Different matrices prefer different SpMV methods

● Sell-c-σ (66), CSR (34), SELLPACK (25)

Highest speedup for a method varies 

● SELLPACK: 1.05-1.31×
● Sell-c-σ: 1.00-1.76×

Each method can take different parameters

● Selecting the correct parameter values is 

crucial: 10× slowdown
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*SuiteSparse: A matrix collection (sparse.tamu.edu)

Are there any patterns that we can detect?
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Example: Effect of the #Rows and Avg #Non-zeros/row
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LAV:Large matrices
Sell-c-R or CSR: Matrices with for low average nnz per row
LAV and Sell-c-R: Matrices with high average nnz per row and few rows
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WISE’s Approach

• The fastest method varies across matrices

• Within a method, the magnitude of the speedup varies

⇒Predict rough speedup

1. Selecting correct parameters for a method affect the speedups substantially

⇒Create individual ML models for method, parameter pairs

1. SuiteSparse matrices are biased towards a few SpMV method

⇒Augment SuiteSparse matrices with a representative synthetic matrix set

1. Complex relationship between matrix size, locality, and skew and the best method

⇒Design a novel sparse matrix feature set
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WISE’s Solutions
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WISE’s Solutions

• The fastest method varies across matrices

• Within a method, the magnitude of the speedup varies

⇒Predict rough speedup

• Selecting correct parameters for a method affect the speedups substantially

⇒Create individual ML models for {method, parameter} pairs

• SuiteSparse matrices are biased towards a few types of matrices (few power law matrices)

⇒Augment SuiteSparse matrices with a representative set of synthetic matrices

• Complex relationship between matrix size, locality of non-zeros, and skew of non-zeros

⇒Select a new sparse matrix feature set
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WISE in Action
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Extracting Matrix Features
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Extracting Matrix Features

● Size Characteristics
○ Amount of work to be done: Number of rows, columns, and nonzeros

● Skew Characteristics of Non-Zeros
○ Rows: Scheduling, vector unit utilization characteristics
○ Columns: Irregularity of input vector accesses

● Locality Characteristics of Non-Zeros
○ Tiles, Row of Tiles, and Column of Tiles: Locality in L1 and L2
○ Behavior across Tiles: Locality in last level cache
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Time taken to generate the features: Avg 1 MKL SpMV iterations (max 5)
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Predicting The Potential Speedup
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Create an individual ML model for each SpMV {method, parameter} pair
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WISE ML Models

Create an individual decision tree for each SpMV {method, parameter} pair

● CSR: Scheduling parameter (dynamic, static, static contiguous)
● SELLPACK: SIMD length, scheduling parameter
● Sell-c-σ: σ parameter, SIMD length, scheduling parameter 
● Sell-c-R, LAV-1Seg: SIMD length
● LAV: Threshold of dense portion, SIMD length
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About 35 different decision trees of max depth 15
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The Method Selection Heuristic
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● We do not predict the exact speedup but a range
● If there is a tie: Choose the cheapest method
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Optimize and Execute
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● Transform matrices into correct format and execute SpMV
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WISE’s Speedup over the Intel MKL Library
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WISE ORACLE

An average speedup of 2.4× over Intel MKL
Oracle method (ground truth) 2.5× speedup over Intel MKL
Intel MKL inspector-executor: 2.1× speedup over Intel MKL
Intel MKL inspector-executor overhead is 17 MKL iterations, WISE is 50% lower
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More in the paper…

20

● More analysis on matrix characteristics

● How are the features calculated?

● Details of the ML models

● Performance of individual ML models generated by WISE
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Conclusions
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● Different SpMV methods work best for different sparse matrices 

● WISE: An ML based framework to predict the speedup of SpMV methods

○ A novel feature set that captures the locality and skew characteristics of non-zeros

○ Considered  a wide range of SpMV methods and parameter values

○ Attains a 2.4x speedup on average over state-of-the-art Intel MKL
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Example: Effect of the Nonzero Skew in the Matrix
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LAV for large matrices
Sell-c-R: Matrices with for low average nnz per row
LAV-1Seg: HighSkew matrices with high average nnz per row and few rows
LAV and Sell-c-R: LowSkew matrices with high average nnz per row and few rows
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Locality Characteristics vs. SpMV Methods
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Sell-c-σ is generally the best
LAV outperforms for large matrices due to segmenting


