WISE: Predicting the Performance of Sparse Matrix Vector Multiplication with Machine Learning

Serif Yesil*, Azin Heidershenas*, Adam Morrison+, Josep Torrellas*
Motivation

- Sparse Matrix-Vector Multiplication (SpMV)
 - An essential kernel
- Used in many different domains:
 - Graph processing and linear solvers
- Low-locality memory accesses
- Widely different behavior based on the sparse matrix used
The Challenge

- Numerous SpMV methods are proposed
- SpMV methods’ performance is hard to predict
- Different methods work best for different classes of sparse matrices

How can we choose the best method for a given sparse matrix?
Our Contribution: WISE

- WISE: An ML-based framework to predict the best SpMV method for a given sparse matrix
 - Uses a novel feature set that models size, locality, and skew characteristics
 - Considers a wide range of SpMV methods (i.e., optimizations)
 - Attains a 2.4x speedup on average over state-of-the-art Intel MKL
SpMV Method Space

Packing: Enables vectorization

Row Frequency Sorting (RFS): Zero padding minimization to improve vectorization

Column Frequency Sorting (CFS): Places frequently accessed elements of the input vector together

Segmenting: Improves last-level cache use

All methods use vectorization
No One-Size-Fits-All Solution

Different matrices prefer different SpMV methods
- Sell-c-σ (66), CSR (34), SELLPACK (25)

Highest speedup for a method varies
- SELLPACK: 1.05-1.31×
- Sell-c-σ: 1.00-1.76×

Each method can take different parameters
- Selecting the correct parameter values is crucial: 10× slowdown

Are there any patterns that we can detect?

*SuiteSparse: A matrix collection (sparse.tamu.edu)
Example: Effect of the #Rows and Avg #Non-zeros/row

LAV: Large matrices
Sell-c-R or CSR: Matrices with low average nnz per row
LAV and Sell-c-R: Matrices with high average nnz per row and few rows
WISE’s Approach

• The fastest method varies across matrices
• Within a method, the magnitude of the speedup varies

⇒ Predict rough speedup
WISE’s Solutions

• The fastest method varies across matrices
• Within a method, the magnitude of the speedup varies
 ⇒ *Predict rough speedup*
• Parameter selection for a method affects the speedups substantially
 ⇒ *Create individual ML models for {method, parameter} pairs*
WISE’s Solutions

• The fastest method varies across matrices
• Within a method, the magnitude of the speedup varies
 ⇒ Predict rough speedup
• Parameter selection for a method affects the speedups substantially
 ⇒ Create individual ML models for \{method, parameter\} pairs
• SuiteSparse matrices are biased towards a few types of matrices (few power law matrices)
 ⇒ Augment SuiteSparse matrices with a representative set of synthetic matrices
WISE’s Solutions

- The fastest method varies across matrices
- Within a method, the magnitude of the speedup varies

⇒ **Predict rough speedup**

- Selecting correct parameters for a method affect the speedups substantially

⇒ **Create individual ML models for {method, parameter} pairs**

- SuiteSparse matrices are biased towards a few types of matrices (few power law matrices)

⇒ **Augment SuiteSparse matrices with a representative set of synthetic matrices**

- Complex relationship between matrix size, locality of non-zeros, and skew of non-zeros

⇒ **Select a new sparse matrix feature set**
WISE in Action

1. Extract Matrix Features
 - Input Matrix
 - Size properties
 - Locality properties
 - Skew properties

2. Predict potential speedup
 - Method Selection
 - Heuristic
 - CSR
 - SELLPACK
 - Sell-c-σ
 - Sell-c-R
 - LAV-1seg
 - LAV

3. Select best method + parameter
 - Method Selection Heuristic

4. Transform the matrix
 - Vectorization selected:
 - Apply CFS, RFS, and Segmenting Selectively
 - CSR selected: No optimizations needed

5. Execute
 - SpMV Execution
Extracting Matrix Features

1. Extract Matrix Features
 - Input Matrix
 - Size properties
 - Locality properties
 - Skew properties

2. Predict potential speedup
 - Method Selection Heuristic
 - CSR
 - SELLPACK
 - Sell-c-σ
 - Sell-c-R
 - LAV-1seg
 - LAV

3. Select best method
 - CSR selected: No optimizations needed

4. Transform the matrix
 - Vectorization selected: Apply CFS, RFS, and Segmenting Selectively

5. Execute
 - SpMV Execution

WISE: Predicting SpMV Performance
Extracting Matrix Features

- **Size Characteristics**
 - Amount of work to be done: Number of rows, columns, and nonzeros

- **Skew Characteristics of Non-Zeros**
 - Rows: Scheduling, vector unit utilization characteristics
 - Columns: Irregularity of input vector accesses

- **Locality Characteristics of Non-Zeros**
 - Tiles, Row of Tiles, and Column of Tiles: Locality in L1 and L2
 - Behavior across Tiles: Locality in last level cache

Time taken to generate the features: Avg 1 MKL SpMV iterations (max 5)
Predicting The Potential Speedup

Create an individual ML model for each SpMV \{method, parameter\} pair

1. Extract Matrix Features
 - Input Matrix
 - Size properties
 - Locality properties
 - Skew properties

2. Predict potential speedup
 - Method Selection
 - Heuristic

3. Select best method
 - Method Selection Heuristic

4. Transform the matrix
 - Vectorization selected:
 - Apply CFS, RFS, and Segmenting Selectively
 - CSR selected:
 - No optimizations needed

5. Execute
 - SpMV Execution
WISE ML Models

Create an individual decision tree for each SpMV \{method, parameter\} pair

- **CSR**: Scheduling parameter (dynamic, static, static contiguous)
- **SELLPACK**: SIMD length, scheduling parameter
- **Sell-c-\(\sigma\)**: \(\sigma\) parameter, SIMD length, scheduling parameter
- **Sell-c-R, LAV-1Seg**: SIMD length
- **LAV**: Threshold of dense portion, SIMD length

About 35 different decision trees of max depth 15
The Method Selection Heuristic

- We do not predict the exact speedup but a range
- If there is a tie: Choose the cheapest method
Optimize and Execute

- Transform matrices into correct format and execute SpMV

Extract Matrix Features

- Input Matrix
 - Size properties
 - Locality properties
 - Skew properties

Predict potential speedup

- Method Selection Heuristic
 - CSR
 - SELLPACK
 - Sell-c-α
 - Sell-c-R
 - LAV-1seg
 - LAV

Select best method

- Vectorization selected: Apply CFS, RFS, and Segmenting Selectively
- CSR selected: No optimizations needed

Transform the matrix

Execute

- SpMV Execution
WISE’s Speedup over the Intel MKL Library

An average speedup of $2.4\times$ over Intel MKL
Oracle method (ground truth) $2.5\times$ speedup over Intel MKL
Intel MKL inspector-executor: $2.1\times$ speedup over Intel MKL
Intel MKL inspector-executor overhead is 17 MKL iterations, WISE is 50% lower
More in the paper...

- More analysis on matrix characteristics
- How are the features calculated?
- Details of the ML models
- Performance of individual ML models generated by WISE
Conclusions

- Different SpMV methods work best for different sparse matrices
- WISE: An ML based framework to predict the speedup of SpMV methods
 - A novel feature set that captures the locality and skew characteristics of non-zeros
 - Considered a wide range of SpMV methods and parameter values
 - Attains a 2.4x speedup on average over state-of-the-art Intel MKL
WISE: Predicting the Performance of Sparse Matrix Vector Multiplication with Machine Learning

Serif Yesil*, Azin Heidershenas*, Adam Morrison†, Josep Torrellas*
Example: Effect of the Nonzero Skew in the Matrix

LAV for large matrices
Sell-c-R: Matrices with low average nnz per row
LAV-1Seg: HighSkew matrices with high average nnz per row and few rows
LAV and Sell-c-R: LowSkew matrices with high average nnz per row and few rows
Locality Characteristics vs. SpMV Methods

Sell-c-σ is generally the best

LAV outperforms for large matrices due to segmenting