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Reinforcement Learning for Microarchitecture

o Reinforcement Learning (RL) gaining traction in microarchitecture
 
o Subclass of ML for action selection problems 
o Agent, environment, action, feedback (reward)
o Goal: maximize accumulated reward in the long-term

o Prefetching, memory controllers, cache coherence for heterogeneous 
accelerators …
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Reinforcement Learning for Microarchitecture

o Reinforcement Learning is attractive for microarchitecture:
ü Can learn, adapt and generalize online at runtime
ü No need for offline data collection
ü No need for offline static system model

o Although effective current RL-based microarchitecture agents:
x Are associated with high complexity introduced by decomposing the 

environment in a complex set of states
x Are not reusable across different use-cases
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Contributions
o We introduce a necessary property of microarchitectural problems that 

enables the usage of the lightweight Multi-Armed Bandit RL algorithms

o We propose a hardware agent called Micro-Armed Bandit (Bandit) that is 
based on the Multi-Armed Bandit algorithms and is:

ü Lightweight (only 100B!) 
ü Reuseable across different microarchitecture problems 

o We evaluate Bandit for 2 different problems:
ü Data prefetching
ü Instruction fetch thread selection in Simultaneous Multithreaded processors
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RL problem formulations

decreasing complexity

o Multi-Armed Bandits (MAB):
• Single state
• Only need to track action-values for a single state
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Property: Temporal Homogeneity in the Action Space

If same action is repeatedly optimal for enough time
• We do not need multiple states
• Multi-Armed Bandits (MAB) is good enough
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Property: Temporal Homogeneity in the Action Space

Multi-Armed Bandits for microarchitecture are good when:
(1) action space is temporally homogeneous and
(2) different actions are optimal across different benchmarks or benchmark phases

o Microarchitecture problems with temporal homogeneity considered in this work:
• data prefetching
• SMT instruction fetch thread selection
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Temporal Homogeneity in Prefetching

o Pythia [Bera-MICRO’21]: state of the art MDP-RL based prefetcher
o Uses 16 different offsets and 4 different degrees (64 total actions)

o Top-2 actions in each application account for 75% of the action selections

Prefetching has high temporal homogeneity
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SMT instruction fetch thread selection

o SMT processors: which thread to fetch instructions 
from?
• Gate thread if it uses too many resources [Choi-ISCA’06]
• Give priority to certain threads over others [Tullsen-ISCA’96]
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Adapting SMT instruction fetch

o Different fetch priority-gating policy combinations work best for different 
benchmarks – static oracle adaptation can provide up to 30% performance 
improvement

Examples of fetch priority-gating policies 

The SMT instruction fetch shows adaptation opportunities 
that can be exploited with Multi-Armed Bandits at runtime
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Multi-Armed Bandit algorithms
o arm : action of the Multi-Armed Bandit agent
o bandit step: time duration for which agent is idle waiting to observe the 

reward from its previous action selection
o r𝒔𝒕𝒆𝒑: reward sample received at the end of bandit step

a%
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bandit step
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n	: number of arm selections, r: average reward of arm
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Key Functions in Multi-Armed Bandit (MAB) algorithms

o nextArm: selects the next arm by tackling the exploration-exploitation tradeoff

o updSels: updates the number of arm selections

o updRew: updates the arm reward after the bandit step is over
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Three MAB algorithms for microarchitecture
o ε-Greedy: 
• nextArm: random, exploration rate does not decrease with time
• updSels: selections are simply incremented
• updRew: reward sample is added to running average

o Upper Confidence Bound (UCB): 
• nextArm: (1) exploration accounts for past reward and (2) exploration rate decreases with time 
Actions that have resulted in very poor performance (e.g. significant IPC drops) have smaller exploration 
probability than near-optimal actions

o Discounted Upper Confidence Bound (DUCB): 
• updSels: selections are discounted (gradually forgotten)
Allows for adapting to dynamic program phases

o More details and microarchitecture-inspired algorithmic modifications in the paper
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The Micro-Armed Bandit Microarchitecture

o Hardware agent 
o Consists of 2 tables:

• nTable: contains # times an arm has been selected
• rTable: contains average reward for the arm
• As many entries as arms (storage: 100B)

o Selects the prefetching and SMT fetching 
action

o Reward: IPC during a bandit step
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Methodology

o Simulation with ChampSim for prefetching and gem5 for SMT

o We use the DUCB algorithm as it shows the best performance

o Traces from SPEC06, SPEC17, Ligra, PARSEC and Cloudsuite for prefetching (1B 
instructions)

o Simpoints from SPEC17 for SMT (150M instructions)

o Skylake-like simulated processor parameters
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Evaluation Highlights  

o  Arm selection with Bandit has very similar geomean performance with a static 
oracle (99.1% for prefetching and 98.6% for SMT) that selects the best arm

o  For prefetching:
• Outperforms Bingo[Bakhshalipour-HPCA’19] and MLOP[Shakerinava-DPC3] by 2.6% and 2.3% 

and matches the performance of Pythia[Bera-MICRO’21] and IPCP[Pakalapati-ISCA’20]

o  For SMT:
• Outperforms ICount[Tullsen-ISCA’96] by 7% and Hill Climbing[Choi-ISCA’06] by 2.2%

o Less than 0.003% area and power overhead on top of a conventional multi-core 
(equipped with stride/stream/NL prefetchers)
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Summary and Learnings

We propose a hardware agent based on Multi-Armed Bandits that is (1) 
lightweight and (2) reusable and evaluate it for:
• Data prefetching
• SMT instruction fetch

Learning 1: Very simple ML algorithms can be beneficial for microarchitecture, 
reducing area cost and implementation complexity 

Learning 2: Overhead can be further reduced if we design ML agents that are 
reusable across different use-cases
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The Micro-Armed Bandit

o Hardware agent that implements MAB 
algorithms

o Consists of 2 tables and a simple 
arithmetic unit à 100B storage overhead

o Used to select the degree and type of a 
set of lightweight L2 prefetchers (NL, 
Stream, Stride)

o Used to select the instruction fetch 
priority-gating policy of the SMT front-end

o The IPC during a bandit step is used as 
the reward

o 4 basic functionalities
o Most of the functionalities are 

implemented in the background resulting 
in very low latency (50 cycles)
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Multi-Armed Bandit algorithms
o Single state
o Different actions available
o Goal is to find the best action while 

minimizing time spent in suboptimal actions 
(exploration vs exploitation)

o arm : action available to the MAB agent
o bandit step: duration for which agent is idle 

waiting to observe the reward from its 
previous action selection

o 𝒓𝒊 : average reward previous selections of 
arm i have yielded

o 𝒏𝒊 : total selections of arm i in the past
o 𝒏𝒕𝒐𝒕𝒂𝒍 : total selections of all arms in the 

past
o 𝒓𝒔𝒕𝒆𝒑 : reward sample received at the end of 

bandit step
o Different MAB algorithms differ on the 
nextArm, updSels and updRew functions
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Methodology

o Arms used in prefetching:

o Arms used in SMT:
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Opportunities for adapting the fetch PG policy

o The best policy heavily depends on the application mix
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ε-Greedy

Random non-decaying exploration

Selections incremented

Step reward added to the running 
average
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Upper Confidence Bound (UCB)

Selection and past reward aware 
decaying exploration

Selections incremented

Step reward added to the running 
average

o Very bad actions and nearly-optimal actions have different exploration chances



25

Discounted Upper Confidence Bound (DUCB)

Selection and past reward aware 
decaying exploration

Selections discounted and 
incremented

Step reward added to the running 
average

o Can adapt to dynamic workload phases
o More in the paper: microarchitecture-inspired modifications


