
1

Micro-Armed Bandit:
Lightweight & Reusable Reinforcement Learning

for Microarchitecture Decision-Making

Gerasimos Gerogiannis and Josep Torrellas

University of Illinois at Urbana-Champaign
gg24@illinois.edu

2

Reinforcement Learning for Microarchitecture

o Reinforcement Learning (RL) gaining traction in microarchitecture

o Subclass of ML for action selection problems
o Agent, environment, action, feedback (reward)
o Goal: maximize accumulated reward in the long-term

o Prefetching, memory controllers, cache coherence for heterogeneous
accelerators …

3

Reinforcement Learning for Microarchitecture

o Reinforcement Learning is attractive for microarchitecture:
ü Can learn, adapt and generalize online at runtime
ü No need for offline data collection
ü No need for offline static system model

o Although effective current RL-based microarchitecture agents:
x Are associated with high complexity introduced by decomposing the

environment in a complex set of states
x Are not reusable across different use-cases

4

Contributions
o We introduce a necessary property of microarchitectural problems that

enables the usage of the lightweight Multi-Armed Bandit RL algorithms

o We propose a hardware agent called Micro-Armed Bandit (Bandit) that is
based on the Multi-Armed Bandit algorithms and is:

ü Lightweight (only 100B!)
ü Reuseable across different microarchitecture problems

o We evaluate Bandit for 2 different problems:
ü Data prefetching
ü Instruction fetch thread selection in Simultaneous Multithreaded processors

5

RL problem formulations

decreasing complexity

o Multi-Armed Bandits (MAB):
• Single state
• Only need to track action-values for a single state

6

Property: Temporal Homogeneity in the Action Space

If same action is repeatedly optimal for enough time
• We do not need multiple states
• Multi-Armed Bandits (MAB) is good enough

7

Property: Temporal Homogeneity in the Action Space

Multi-Armed Bandits for microarchitecture are good when:
(1) action space is temporally homogeneous and
(2) different actions are optimal across different benchmarks or benchmark phases

o Microarchitecture problems with temporal homogeneity considered in this work:
• data prefetching
• SMT instruction fetch thread selection

8

Temporal Homogeneity in Prefetching

o Pythia [Bera-MICRO’21]: state of the art MDP-RL based prefetcher
o Uses 16 different offsets and 4 different degrees (64 total actions)

o Top-2 actions in each application account for 75% of the action selections

Prefetching has high temporal homogeneity

9

SMT instruction fetch thread selection

o SMT processors: which thread to fetch instructions
from?
• Gate thread if it uses too many resources [Choi-ISCA’06]
• Give priority to certain threads over others [Tullsen-ISCA’96]

10

Adapting SMT instruction fetch

o Different fetch priority-gating policy combinations work best for different
benchmarks – static oracle adaptation can provide up to 30% performance
improvement

Examples of fetch priority-gating policies

The SMT instruction fetch shows adaptation opportunities
that can be exploited with Multi-Armed Bandits at runtime

11

Multi-Armed Bandit algorithms
o arm : action of the Multi-Armed Bandit agent
o bandit step: time duration for which agent is idle waiting to observe the

reward from its previous action selection
o r𝒔𝒕𝒆𝒑: reward sample received at the end of bandit step

a%

Initial Round Robin Phase
bandit step

arm = a! r! = r"#$%
n! = 1

a&
arm = a& r& = r"#$%

n& = 1

a'
arm = a' r' = r"#$%

n' = 1

Main Phase

arm
arm =

nextArm r()*	=
updRew
n()* =

updSels

…

n	: number of arm selections, r: average reward of arm

12

Key Functions in Multi-Armed Bandit (MAB) algorithms

o nextArm: selects the next arm by tackling the exploration-exploitation tradeoff

o updSels: updates the number of arm selections

o updRew: updates the arm reward after the bandit step is over

13

Three MAB algorithms for microarchitecture
o ε-Greedy:
• nextArm: random, exploration rate does not decrease with time
• updSels: selections are simply incremented
• updRew: reward sample is added to running average

o Upper Confidence Bound (UCB):
• nextArm: (1) exploration accounts for past reward and (2) exploration rate decreases with time
Actions that have resulted in very poor performance (e.g. significant IPC drops) have smaller exploration
probability than near-optimal actions

o Discounted Upper Confidence Bound (DUCB):
• updSels: selections are discounted (gradually forgotten)
Allows for adapting to dynamic program phases

o More details and microarchitecture-inspired algorithmic modifications in the paper

14

The Micro-Armed Bandit Microarchitecture

o Hardware agent
o Consists of 2 tables:

• nTable: contains # times an arm has been selected
• rTable: contains average reward for the arm
• As many entries as arms (storage: 100B)

o Selects the prefetching and SMT fetching
action

o Reward: IPC during a bandit step

15

Methodology

o Simulation with ChampSim for prefetching and gem5 for SMT

o We use the DUCB algorithm as it shows the best performance

o Traces from SPEC06, SPEC17, Ligra, PARSEC and Cloudsuite for prefetching (1B
instructions)

o Simpoints from SPEC17 for SMT (150M instructions)

o Skylake-like simulated processor parameters

16

Evaluation Highlights

o Arm selection with Bandit has very similar geomean performance with a static
oracle (99.1% for prefetching and 98.6% for SMT) that selects the best arm

o For prefetching:
• Outperforms Bingo[Bakhshalipour-HPCA’19] and MLOP[Shakerinava-DPC3] by 2.6% and 2.3%

and matches the performance of Pythia[Bera-MICRO’21] and IPCP[Pakalapati-ISCA’20]

o For SMT:
• Outperforms ICount[Tullsen-ISCA’96] by 7% and Hill Climbing[Choi-ISCA’06] by 2.2%

o Less than 0.003% area and power overhead on top of a conventional multi-core
(equipped with stride/stream/NL prefetchers)

17

Summary and Learnings

We propose a hardware agent based on Multi-Armed Bandits that is (1)
lightweight and (2) reusable and evaluate it for:
• Data prefetching
• SMT instruction fetch

Learning 1: Very simple ML algorithms can be beneficial for microarchitecture,
reducing area cost and implementation complexity

Learning 2: Overhead can be further reduced if we design ML agents that are
reusable across different use-cases

18

Micro-Armed Bandit:
Lightweight & Reusable Reinforcement Learning

for Microarchitecture Decision-Making

Gerasimos Gerogiannis and Josep Torrellas

University of Illinois at Urbana-Champaign
gg24@illinois.edu

19

The Micro-Armed Bandit

o Hardware agent that implements MAB
algorithms

o Consists of 2 tables and a simple
arithmetic unit à 100B storage overhead

o Used to select the degree and type of a
set of lightweight L2 prefetchers (NL,
Stream, Stride)

o Used to select the instruction fetch
priority-gating policy of the SMT front-end

o The IPC during a bandit step is used as
the reward

o 4 basic functionalities
o Most of the functionalities are

implemented in the background resulting
in very low latency (50 cycles)

20

Multi-Armed Bandit algorithms
o Single state
o Different actions available
o Goal is to find the best action while

minimizing time spent in suboptimal actions
(exploration vs exploitation)

o arm : action available to the MAB agent
o bandit step: duration for which agent is idle

waiting to observe the reward from its
previous action selection

o 𝒓𝒊 : average reward previous selections of
arm i have yielded

o 𝒏𝒊 : total selections of arm i in the past
o 𝒏𝒕𝒐𝒕𝒂𝒍 : total selections of all arms in the

past
o 𝒓𝒔𝒕𝒆𝒑 : reward sample received at the end of

bandit step
o Different MAB algorithms differ on the
nextArm, updSels and updRew functions

21

Methodology

o Arms used in prefetching:

o Arms used in SMT:

22

Opportunities for adapting the fetch PG policy

o The best policy heavily depends on the application mix

23

ε-Greedy

Random non-decaying exploration

Selections incremented

Step reward added to the running
average

24

Upper Confidence Bound (UCB)

Selection and past reward aware
decaying exploration

Selections incremented

Step reward added to the running
average

o Very bad actions and nearly-optimal actions have different exploration chances

25

Discounted Upper Confidence Bound (DUCB)

Selection and past reward aware
decaying exploration

Selections discounted and
incremented

Step reward added to the running
average

o Can adapt to dynamic workload phases
o More in the paper: microarchitecture-inspired modifications

