Micro-Armed Bandit: Lightweight & Reusable Reinforcement Learning for Microarchitecture Decision-Making

Gerasimos Gerogiannis and Josep Torrellas

University of Illinois at Urbana-Champaign gg24@illinois.edu

1

Reinforcement Learning for Microarchitecture

- Reinforcement Learning (RL) gaining traction in microarchitecture
- Subclass of ML for action selection problems
- Agent, environment, action, feedback (reward)
- o Goal: maximize accumulated reward in the long-term
- Prefetching, memory controllers, cache coherence for heterogeneous accelerators ...

Reinforcement Learning for Microarchitecture

- Reinforcement Learning is attractive for microarchitecture:
- Can learn, adapt and generalize online at runtime
- ✓ No need for offline data collection
- ✓ No need for offline static system model
- Although effective current RL-based microarchitecture agents:
- x Are associated with **high complexity** introduced by decomposing the environment in a complex set of states
- x Are **not reusable** across different use-cases

Contributions

 We introduce a necessary property of microarchitectural problems that enables the usage of the lightweight Multi-Armed Bandit RL algorithms

- We propose a hardware agent called Micro-Armed Bandit (Bandit) that is based on the Multi-Armed Bandit algorithms and is:
- Lightweight (only 100B!)
- Reuseable across different microarchitecture problems
- We evaluate Bandit for 2 different problems:
- Data prefetching
- Instruction fetch thread selection in Simultaneous Multithreaded processors

RL problem formulations

- Multi-Armed Bandits (MAB):
 - Single state
 - Only need to track action-values for a single state

Property: Temporal Homogeneity in the Action Space

If same action is repeatedly optimal for enough time

- We do not need multiple states
- Multi-Armed Bandits (MAB) is good enough

Property: Temporal Homogeneity in the Action Space

Multi-Armed Bandits for microarchitecture are good when:

- (1) action space is temporally homogeneous and
- (2) different actions are optimal across different benchmarks or benchmark phases

• Microarchitecture problems with temporal homogeneity considered in this work:

- data prefetching
- SMT instruction fetch thread selection

Temporal Homogeneity in Prefetching

Pythia [Bera-MICRO'21]: state of the art MDP-RL based prefetcher
Uses 16 different offsets and 4 different degrees (64 total actions)

Top-2 actions in each application account for 75% of the action selections

Prefetching has high temporal homogeneity

SMT instruction fetch thread selection

- SMT processors: which thread to fetch instructions from?
 - Gate thread if it uses too many resources [Choi-ISCA'06]
 - Give priority to certain threads over others [Tullsen-ISCA'96]

Adapting SMT instruction fetch

Policy Mnemonic	Fetch Priority	Fetch-gate if occupancy of any of these structures exceeds threshold:					
winchionic		IQ	LSQ	ROB	IRF		
IC_0000	ICount	no	no	no	no		
BrC_1000	Branch Count	yes	no	no	no		
IC_1110	ICount	yes	yes	yes	no		
IC_1111	ICount	yes	yes	yes	yes		
LSQC_1111	LSQ Count	yes	yes	yes	yes		
RR_1111	Round Robin	yes	yes	yes	yes		

Examples of fetch priority-gating policies

 Different fetch priority-gating policy combinations work best for different benchmarks – static oracle adaptation can provide up to 30% performance improvement

The SMT instruction fetch shows adaptation opportunities that can be exploited with Multi-Armed Bandits at runtime

Multi-Armed Bandit algorithms

- **arm** : action of the Multi-Armed Bandit agent
- bandit step: time duration for which agent is idle waiting to observe the reward from its previous action selection
- \circ r_{step} : reward sample received at the end of bandit step

Key Functions in Multi-Armed Bandit (MAB) algorithms

- o **nextArm:** selects the next arm by tackling the exploration-exploitation tradeoff
- **updSels:** updates the number of arm selections
- **updRew:** updates the arm reward after the bandit step is over

Three MAB algorithms for microarchitecture

 $\circ \epsilon$ -Greedy:

- nextArm: random, exploration rate does not decrease with time
- updSels: selections are simply incremented
- updRew: reward sample is added to running average
- Upper Confidence Bound (UCB):

• *nextArm:* (1) exploration accounts for past reward and (2) exploration rate decreases with time Actions that have resulted in very poor performance (e.g. significant IPC drops) have smaller exploration probability than near-optimal actions

Discounted Upper Confidence Bound (DUCB):

updSels: selections are discounted (gradually forgotten)
 Allows for adapting to dynamic program phases

More details and microarchitecture-inspired algorithmic modifications in the paper

The Micro-Armed Bandit Microarchitecture

- Hardware agent
- Consists of 2 tables:
 - nTable: contains # times an arm has been selected
 - rTable: contains average reward for the arm
 - As many entries as arms (storage: 100B)
- Selects the prefetching and SMT fetching action
- Reward: IPC during a bandit step

Methodology

- Simulation with ChampSim for prefetching and gem5 for SMT
- We use the DUCB algorithm as it shows the best performance
- Traces from SPEC06, SPEC17, Ligra, PARSEC and Cloudsuite for prefetching (1B instructions)
- Simpoints from SPEC17 for SMT (150M instructions)
- Skylake-like simulated processor parameters

Evaluation Highlights

- Arm selection with Bandit has very similar geomean performance with a static oracle (99.1% for prefetching and 98.6% for SMT) that selects the best arm
- For prefetching:
 - Outperforms Bingo[Bakhshalipour-HPCA'19] and MLOP[Shakerinava-DPC3] by 2.6% and 2.3% and matches the performance of Pythia[Bera-MICRO'21] and IPCP[Pakalapati-ISCA'20]
- For SMT:
 - Outperforms ICount[Tullsen-ISCA'96] by 7% and Hill Climbing[Choi-ISCA'06] by 2.2%
- Less than 0.003% area and power overhead on top of a conventional multi-core (equipped with stride/stream/NL prefetchers)

Summary and Learnings

We propose a hardware agent based on Multi-Armed Bandits that is (1) lightweight and (2) reusable and evaluate it for:

- Data prefetching
- SMT instruction fetch

Learning 1: Very simple ML algorithms can be beneficial for microarchitecture, reducing area cost and implementation complexity

Learning 2: Overhead can be further reduced if we design ML agents that are reusable across different use-cases

Micro-Armed Bandit: Lightweight & Reusable Reinforcement Learning for Microarchitecture Decision-Making

Gerasimos Gerogiannis and Josep Torrellas

University of Illinois at Urbana-Champaign gg24@illinois.edu

The Micro-Armed Bandit

- Hardware agent that implements MAB algorithms
- Consists of 2 tables and a simple arithmetic unit → 100B storage overhead
- Used to select the degree and type of a set of lightweight L2 prefetchers (NL, Stream, Stride)
- Used to select the instruction fetch priority-gating policy of the SMT front-end
- The IPC during a bandit step is used as the reward
- 4 basic functionalities
- Most of the functionalities are implemented in the background resulting in very low latency (50 cycles)

(c) Update Selections

(b) Communicate Arm Selection

Multi-Armed Bandit algorithms

- Single state
- Different actions available
- Goal is to find the best action while minimizing time spent in suboptimal actions (exploration vs exploitation)
- **arm** : action available to the MAB agent
- bandit step: duration for which agent is idle waiting to observe the reward from its previous action selection
- $\circ r_i$: average reward previous selections of arm i have yielded
- \circ n_i : total selections of arm i in the past
- \circ n_{total} : total selections of all arms in the past
- $\circ r_{step}$: reward sample received at the end of bandit step
- Different MAB algorithms differ on the *nextArm*, *updSels* and *updRew* functions

Algorithm 1 General template for MAB algorithms

- 1: Inputs: M arms
- 2: Variables: r_i : average reward of arm i,
 n_i : number of times that arm i has been selected

Initial Round Robin Phase

- 3: $n_{total} \leftarrow 0$
- 4: **for** t = 1 to *M* **do**
- 5: $arm \leftarrow t$
- 6: $n_{arm} \leftarrow 1$

```
7: n_{total} \leftarrow n_{total} + 1
```

```
8: // receive reward at the end of the bandit step
```

```
9: r_{arm} \leftarrow r_{step}
```

```
10: end for
```

```
Main Loop
```

```
11: for t = M + 1 to \infty do
```

```
12: arm \leftarrow nextArm()
```

```
13: updSels(arm)
```

14: // receive reward at the end of the bandit step

15: $r_{arm} \leftarrow updRew(r_{step})$

16: **end for**

Methodology

• Arms used in prefetching:

Arm id	0	1	2	3	4	5	6	7	8	9	10
NL On/Off	Off	Off	On	Off	Off	Off	Off	Off	On	Off	Off
Stride Degree	0	0	0	0	2	4	0	8	0	0	15
Streamer Deg.	4	0	0	2	2	4	6	6	8	15	15

• Arms used in SMT:

Policy Mnemonic	Fetch Priority	Fetch-gate if occupancy of any of these structures exceeds threshold:					
		IQ	LSQ	ROB	IRF		
IC_0000	ICount	no	no	no	no		
BrC_1000	Branch Count	yes	no	no	no		
IC_1110	ICount	yes	yes	yes	no		
IC_1111	ICount	yes	yes	yes	yes		
LSQC_1111	LSQ Count	yes	yes	yes	yes		
RR_1111	Round Robin	yes	yes	yes	yes		

Opportunities for adapting the fetch PG policy

The best policy heavily depends on the application mix

ε-Greedy

Random non-decaying exploration

Selections incremented

Step reward added to the running average

Upper Confidence Bound (UCB)

Very bad actions and nearly-optimal actions have different exploration chances

Discounted Upper Confidence Bound (DUCB)

- Can adapt to dynamic workload phases
- More in the paper: microarchitecture-inspired modifications

