Phoenix: Detecting and Recovering from Permanent Processor Design Bugs with Programmable Hardware

Smruti R. Sarangi
Abhishek Tiwari
Josep Torrellas

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu
Can a Processor have a Design Defect?

No Way!!!

Yes, it is a major challenge.
A Major Challenge ???

- 50-70% effort spent on debugging
- 1-2 year verification times
- Massive computational resources

Some defects still slip through to production silicon
Defects slip through ???

1994 Pentium defect costs Intel $475 million
1999 Defect leads to stoppage in shipping Pentium III servers
2004 AMD Opteron defect leads to data loss
2005 A version of Itanium 2 recalled

Does not look like it will stop

Increasing features on chip

Conventional approaches are ineffective
- Micro-code patching
- Compiler workarounds
- OS hacks
- Firmware
Vision

- Processors include programmable HW for patching design defects
- Vendor discovers a new defect
- Vendor characterizes the conditions that exercise the defect
- Vendor sends a **defect signature** to processors in the field
- Customers patch the HW defect
Additional Advantage: Reduced Time to Market

Pentium-M, Silas et al., 2003

- Reduced time to market → Vital ingredient of profitability

![Graph showing the percentage of defects detected over weeks from silicon arrival. The graph shows a significant increase in the percentage of defects detected within the first 8 weeks.]
Outline

- Analysis and Characterization
- Architecture for Hardware Patching
- Evaluation
Defects in Deployed Systems

- We studied public domain errata documents for 10 current processors
 - Intel Pentium III, IV, M, and Itanium I and II
 - AMD K6, Athlon, Athlon 64
 - IBM G3 (PPC 750 FX), MOT G4 (MPC 7457)
Dissecting a Defect – from Errata doc.

- **Module**: L1, ALU, Memory, etc.
- **Type of Error**: Hang, data corruption, IO failure, wrong data
- **Condition**: A ∪ (B ∩ C ∩ D)
 - **Signal**: Snoop, L1 hit, IO request, Low power mode

http://iacoma.cs.uiuc.edu
Types of Defects

- Design Defect
 - Non-Critical
 - Performance counters
 - Error reporting registers
 - Breakpoint support
 - Critical
 - Defects in memory, IO, etc.
- Concurrent
 - All signals – same time
- Complex
 - Different times

http://iacoma.cs.uiuc.edu
Characterization

- **31%**
- **69%**
When can the defects be detected?

Signals

- Condition Detector
 - Pre Defect (63%)
 - Post Defect (37%)

Defect

- ALU
- Memory, IO

Local
Pipeline
Other

Time
Outline

- Analysis and Characterization
- Architecture for Hardware Patching
- Evaluation
Phoenix Conceptual Design

- Signature Buffer
- Signal Selection Unit (SSU)
- Bug Detection Unit (BDU)
- Global Recovery Unit

Store **defect signatures** obtained from vendor
Program the on-chip reconfigurable logic
Tap signals from units
Select a subset
Collect signals from SSUs
Compute defect conditions
Initiate recovery if a defect condition is true

http://iacoma.cs.uiuc.edu
Distributed Design of Phoenix

Examples of Subsystems

<table>
<thead>
<tr>
<th></th>
<th>Inst. Cache</th>
<th>FP ALU</th>
<th>Virtual Mem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetch Unit</td>
<td>L1 Cache</td>
<td>IO Cntrl.</td>
<td></td>
</tr>
</tbody>
</table>

http://iacoma.cs.uiuc.edu
Overall Design

Chip Boundary

Global Recovery Unit

HUB

Neighborhood

HUB

Neighborhood

HUB

Neighborhood

HUB

Neighborhood

HUB

Neighborhood

HUB

Neighborhood
Software Recovery Handler

- Reset Module
- Local Post
- Flush Pipeline
- Pipeline Post + Pre
- Type of Defect
- Checkpointing Support
 - Yes: Rollback
 - No: Interrupt to OS
- Rest of Post
- Turn condition off
- continue
Designing Phoenix for a New Processor

New Processor

List of Signals
- Generic
- Specific
 - Learn from other processors
 - Processor data sheets

Sizes of Structures
- Training Data
 - Scatter plot of sizes vs. # of signals in unit
 - Derive rules of thumb

http://iacoma.cs.uiuc.edu
Designing Phoenix for a New Proc. – II

1. Generate list of signals to tap
2. Decide on breakdown of subsystems and neighborhoods
3. Place BDUs, SSUs, and HUBs
4. Size structures using the rules of thumb
5. Route all signals and realize the logic function of defects

http://iacoma.cs.uiuc.edu
Outline

- Analysis and Characterization
- Architecture for Hardware Patching
- Evaluation
Signals Tapped

Generic Signals
- L2 hit, low power mode
- ALU access, etc.

Specific Signals
- A20 pin set in Pentium 4
- BAT mode in IBM 750FX
Defect Coverage Results

Detection Coverage: 65%

Recovery Coverage: 60%

Pre: 69%

Post: 31%

Concurrent: 63%

Complex: 37%

Training Set:
- Intel P3, P4, P-M
- Itanium I & II
- AMD K6, K7
- AMD Opteron
- IBM G3
- Motorola G4

Test Set:
- UltraSparc II
- Intel IXP 1200
- Intel PXA 270
- PPC 970
- Pentium D

http://iacoma.cs.uiuc.edu
Overheads

- **Area**
 - Programmable logic (PLA & interconnect)
 - Estimated using PLA layouts (Khatri et al.)
 - 0.05%

- **Wiring**
 - Wires to route signals
 - Estimated using Rent’s rule
 - 0.48%

- **Timing**
 - None

http://iacoma.cs.uiuc.edu
Impact of Training Set Size

- Train set only needs to have 7 processors
- Coverage in new processors is very high

http://iacoma.cs.uiuc.edu
Conclusion

- We analyzed the defects in 10 processors
- **Phoenix** novel on-chip programmable HW
- Evaluated impact:
 - 150 – 270 signals tapped
 - Negligible area, wiring, and performance overhead
 - Defect coverage: 69% detected, 63% recovered
 - Algorithm to automatically size Phoenix for new procs

- We can now live with defects !!!
Phoenix: Detecting and Recovering from Permanent Processor Design Bugs with Programmable Hardware

Smruti R. Sarangi
Abhishek Tiwari
Josep Torrellas

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu
Backup
Phoenix Algorithm for New Processors

Generate Signal List

Place a SSU-BDU pair in each subsystem

Use k-means clustering to group subsystems in neighborhoods

Size hardware using the thumb-rules

Map signals in errata to signals in the list

Route all signals and realize the logic function

Similar results obtained for 9 Sun processors – UltraSparc III, III+, III++, Illi, Ille, IV, IV+, Niagara I and II

http://iacoma.cs.uiuc.edu
Where are the Critical defects?

- The core is well debugged
- Most of the defects are in the mem. system