Selective Re-execution of
Long-retired Misspeculated Instructions
Using Forward Slicing

Smruti R. Sarangi, Wel Liu, Josep Torrellas, Yuanyuan Zhou

University of lllinois at Urbana-Champaign

~ http://lacoma.cs.uiuc.edu

Data Value Speculation

= Predict the value and proceed speculatively

= When the correct value comes in, If misspediction,
squash and re-execute

= |nitial Proposals
* L1 data
 Data Dependences
= Aggressive Novel Proposals

* Values of L2 misses
* Thread independence in Thread-Level Speculation
* Speculative Synchronization

~ ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 2

Long-latency Speculation

Checkpoint

Prediction

6.6 Instructions < 210 Instructions

Resolution A—

= Misprediction recovery is very wasteful
= Most discarded instructions are still useful

~ ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 3

ontributions |

= ReSlice: Architecture to buffer forward slice and re-
execute it on misprediction

Checkpoint Buffered Slice

i e
i i
i -
nmﬁﬁ&idiiiiiiiiiiii;i;;;;',',i i

e

?
. .
:

nnuEmmmmnmmm

i =

B

iR

b i

R
.
i ~'x'xx4:;z;t;z;t;z;zzzzzgag:gag:gag:gag:gaazaaazgag:gagzgagzgagzgagzgagzgag:gag:gag:gagzgagzgagzga

Resolution

If succeeds

ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 4

Contributions |

= ReSlice: Architecture to buffer forward slice and re-
execute it on misprediction

Checkpoint Buffered Slice

Prediction l

Resolution

If fails

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 5

Contributions I

= A Sufficient Condition
e Guarantee to correctly repair the program state

= Application to TLS:

* Speedup: geometric mean 12% over TLS
e ExD? reduction: 20%

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 6

Outline

= Motivation and Contributions
= |dea of ReSlice

= Architecture Design

= Experimental Results

= Conclusions

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 7

ldea of ReSlice

= |nitial execution of the task

* Predict value of “risky” load and continue
e Buffer in HW the forward slice of the load

= \When a misprediction is confirmed

* Re-execute the slice with the new value
* |f succeed: merge the register and memory state and continue

* |[f fail: revert to the conventional recovery: roll back and re-
execute

., ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 8

Why is It Challenging?

New values may induce new addresses => Slice changes

“Risky” Load
Initial Execution Buffered Slice Correct Execution
#1: LD R1 mem[0x0] LD R1<-0x10 LD R1<-0x20
#H2: ST R2 (R1) ST R2 mem[0x10] ST R2 mem[0x20]

#3: LD R5 mem[0x20] LD R5 mem[0x20]

Problem: Instruction #3 Is not buffered!

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 9

More Challenges

Initial Execution

Buffered Slice —

Re-Execution

A

Extra Insts Missing Insts Data Corruption

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 10

Solution: The Example Again

Run-time checking during slice re-execution

“Risky” Load
Initial Execution Buffered Slice Slice Re-Execution
#1. LD R1 mem[0x0] LD R1<-0x10 LD R1<-0x20
#2: ST R2 (R1) ST R2 mem[0x10] ST R2 mem[0x20]

Different store addresses; and
mem[0x20] is accessed in Initial Execution

#3: LD R5 mem|[0x20] \ /

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 11

A Sufficient Condition

= Guarantee Correct Slice Re-Execution and Merge
= Easy for HW to check at run-time

= Detalls please see our paper

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 12

How does ReSlice work?

Timeline

mmmp Checkpoint @ <

Prediction @ » Slice Collection

Compare the correct

/ and predicted value
Correct

e Misprediction
prediction

Resolution @
|
@ -

Slice Re-Execution

Correct
Incorrect

State Merging

\4

~ ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 13

Architecture Design

CPU

Cache]

Register

State
Slice Info

Slice Info

S .

escriptors

Memory
State

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 14

Step 1: Slice Collection

- o (T
Slice o Re-Exe9utlon

Descriptor t

* Fill up the Slice Buffer when a prediction is made

* Track both register and memory dependence
* Save live-in operands and slice instructions

* Slices are buffered when instructions are retired

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 15

An Example

Live Ins Buffered Insts

LD R%m[Ox20] Slice Desc.

ADD R3. R1 R2 | T N\
) b} '\
CE)

D |

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 16

Step 2: Slice Re-Execution

Cache]

Memory
State

[CPU _
Register
State
Slice Info

L :mm

* REU takes over after a violation is verified
* In-order execution
e Sufficient condition is checked during the re-execution

* |f succeeds, merge the register and memory state,
otherwise, squash the task and restart

~ ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 17

Step 3: State Merging

Register
State

Descriptor

* Copy live registers back to the main process
register file

* Merge memory state (detalls please see the paper)

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 18

Multiple Overlapping Slices

= One slice might corrupt live-ins of the other slice

Slice 1
#1: LD R4 mem1 Live Ins “
at O Buffered Insts
#2: LD R3 mem?2
\ \ LD R4 mem1
#3: ADD R1 R3 R4 LD R3 mem?2
/ ADD R1 R3 R4

#4: ST R1 mem3 ST R1 mem3

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 19

Outline

= Motivation and Contributions
" |dea of ReSlice

= Architecture Design

= Experimental Results

= Conclusions

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 20

Methodology

Serial Baseline: TLS TLS+ReSlice

o eri— [e ——

1 3-issue core 4 3-issue cores with TLS 4 3-issue cores with TLS and ReSlice

= Simulated Architecture
* 5GHz @ 70nm
* Private 16k L1 per core; MB Shared L2
* Main memory latency of 500 cycles

= About 0.75-1.50 Billion instructions simulated

~ ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 21

Slice Characterization

4.5 Reg Live-ins

1.0 Mem 10.4 instructions

1.6 Slices per Task

15% Tasks with
overlapping slices

2.2 Reg Live-

1.9 Mem Live-outs

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 22

Accuracy of ReSlice

O Salvaged Tasks B Squashed Tasks

100% | pmm -] —
90%
~ 80%
=
o 70% -
X
2 60% -
l—
s 50% -
o 40% -
£ 30% -
< 20% n
10% -
O% 1 | | | | | | | |

bzip2 crafty gap gzip mcf parser twolf vortex vpr A.Mean

More 70% tasks are salvaged because of ReSlice

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 23

Performance

1.4 O Serial BTLS O TLS+ReSlice

0.2 — |

O T I I I I I I I o

bzip2 crafty gap gzip mcf parser twolf vortex vpr G.Mean

TLS+ReSlice speeds up 12% over TLS and 45% over Serial

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 24

Energy x Delay?

BTLS OTLS+ReSlice |

1.2

0.8 - .

0.6

0.4 -

Normalized E*D*D

bzip2 crafty gap gzip mcf parser twolf vortex vpr G.Mean

ExD?2reduction: 20% over TLS

~ ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 25

Conclusions

= Generic Architecture for Forward slice re-execution

= A Sufficient Condition for correct re-execution and
merge

= Improve state of the art TLS on Specint

e Speedups: 1.12 over TLS, 1.45 over Serial
e ExD?reduction: 20% over TLS

= Recovering wasted work is a promising approach

e Boost performance
* Energy efficient

.m ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions Using Forward Slicing Wei Liu, University of Illinois 26

Selective Re-execution of
Long-retired Misspeculated Instructions

Using Forward Slicing

Smruti R. Sarangi, Wel Liu, Josep Torrellas, Yuanyuan Zhou

University of lllinois at Urbana-Champaign

~ http://lacoma.cs.uiuc.edu

Normalized Energy

© o o © = =
N A OO © B NN

0

bzip2

crafty

gap

gzip mcf parser twolf

O Base mLogging O Pred. O Re-exec

vortex

vpr

A.Mean

