Selective Re-execution of Long-retired Misspeculated Instructions Using Forward Slicing

Smruti R. Sarangi, Wei Liu, Josep Torrellas, Yuanyuan Zhou

University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Data Value Speculation

- Predict the value and proceed speculatively
- When the correct value comes in, if misspediction, squash and re-execute
- Initial Proposals
 - L1 data
 - Data Dependences
- Aggressive Novel Proposals
 - Values of L2 misses
 - Thread independence in Thread-Level Speculation
 - Speculative Synchronization

Long-latency Speculation

- Misprediction recovery is very wasteful
- Most discarded instructions are still useful

Contributions I

 ReSlice: Architecture to buffer forward slice and reexecute it on misprediction

Contributions I

 ReSlice: Architecture to buffer forward slice and reexecute it on misprediction

Buffered Slice

If fails

Contributions II

- A Sufficient Condition
 - Guarantee to correctly repair the program state
- Application to TLS:
 - Speedup: geometric mean 12% over TLS
 - ExD² reduction: 20%

Outline

- Motivation and Contributions
- Idea of ReSlice
- Architecture Design
- Experimental Results
- Conclusions

Idea of ReSlice

- Initial execution of the task
 - Predict value of "risky" load and continue
 - Buffer in HW the forward slice of the load
- When a misprediction is confirmed
 - Re-execute the slice with the new value
 - If succeed: merge the register and memory state and continue
 - If fail: revert to the conventional recovery: roll back and reexecute

Why is It Challenging?

New values may induce new addresses => Slice changes

"Risky" Load

Initial Execution

#1: LD R1 mem[0x0]

#2: ST R2 (R1)

#3: LD R5 mem[0x20]

• • •

Buffered Slice

LD R1<-0x10

ST R2 mem[0x10]

Correct Execution

LD R1<-0x20

ST R2 mem[0x20]

LD R5 mem[0x20]

Problem: Instruction #3 is not buffered!

More Challenges

Solution: The Example Again

Run-time checking during slice re-execution

"Risky" Load Initial Execution Buffered Slice Slice Re-Execution #1: LD R1 mem[0x0] LD R1<-0x10 LD R1<-0x20 #2: ST R2 (R1) ST R2 mem[0x20] **ST R2 mem[0x10]** #3: LD R5 mem[0x20] Different store addresses; and mem[0x20] is accessed in Initial Execution

A Sufficient Condition

- Guarantee Correct Slice Re-Execution and Merge
- Easy for HW to check at run-time

Details please see our paper

How does ReSlice work?

Architecture Design

Step 1: Slice Collection

- Fill up the Slice Buffer when a prediction is made
 - Track both register and memory dependence
 - Save live-in operands and slice instructions
- Slices are buffered when instructions are retired

An Example

LD R1 mem[0x20]

ADD R3, R1, R2

R4 = 0x10

ST R3, mem[R4]

Step 2: Slice Re-Execution

- REU takes over after a violation is verified
 - In-order execution
- Sufficient condition is checked during the re-execution
- If succeeds, merge the register and memory state; otherwise, squash the task and restart

Step 3: State Merging

- Copy live registers back to the main process register file
- Merge memory state (details please see the paper)

Multiple Overlapping Slices

One slice might corrupt live-ins of the other slice

#1: LD R4 mem1

#2: LD R3 mem2

#3: ADD R1 R3 R4

#4: ST R1 mem3

Outline

- Motivation and Contributions
- Idea of ReSlice
- Architecture Design
- Experimental Results
- Conclusions

Methodology

Serial Baseline: TLS TLS+ReSlice 1 3-issue core 4 3-issue cores with TLS 4 3-issue cores with TLS and ReSlice

- Simulated Architecture
 - 5 GHz @ 70nm
 - Private 16k L1 per core; MB Shared L2
 - Main memory latency of 500 cycles
- About 0.75-1.50 Billion instructions simulated

Slice Characterization

Accuracy of ReSlice

More 70% tasks are salvaged because of ReSlice

Performance

TLS+ReSlice speeds up 12% over TLS and 45% over Serial

Energy × Delay²

E×D² reduction: 20% over TLS

Conclusions

- Generic Architecture for Forward slice re-execution
- A Sufficient Condition for correct re-execution and merge
- Improve state of the art TLS on SpecInt
 - Speedups: 1.12 over TLS, 1.45 over Serial
 - ExD² reduction: 20% over TLS

- Recovering wasted work is a promising approach
 - Boost performance
 - Energy efficient

Selective Re-execution of Long-retired Misspeculated Instructions Using Forward Slicing

Smruti R. Sarangi, Wei Liu, Josep Torrellas, Yuanyuan Zhou

University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

