
1

SPADE: A Flexible and Scalable

Accelerator for SpMM and SDDMM

Gerasimos Gerogiannis, Serif Yesil*, Damitha Lenadora,

Dingyuan Cao, Charith Mendis and Josep Torrellas

University of Illinois at Urbana-Champaign

*Now at NVIDIA.

2

SpMM and SDDMM

o Two important operations in sparse matrix computations:

• SpMM: Sparse Matrix – Dense Matrix Multiplication

• SDDMM: Sampled Dense Matrix – Dense Matrix Multiplication

o Applications in machine learning, graph neural networks (GNNs),

atmospheric modeling, aerodynamic design, linear algebra solvers …

o Unique mixture of sparse and dense operands

o Heavily memory-bound for real-world graphs

3

SpMM and SDDMM

o The non-zeros of the sparse matrix drive the accesses to the dense

matrices and lead to irregular access patterns

o Reuse of dense rows depends on sparsity pattern

4

Pitfalls in Designing an Accelerator for SpMM and SDDMM

o Low arithmetic intensity makes host-accelerator data transfers and virtual

address remapping very costly (>97% of execution time)

o Current accelerator designs are inflexible and fail to adapt to varying

sparsity patterns of the input matrix (e.g., road graphs, social network

graphs, scientific graphs)

5

Addressing these Pitfalls with SPADE

o To eliminate host-accelerator data transfer and address remapping cost:

✓ An accelerator architecture tightly integrated with the cores of a CPU multicore

o To accommodate varying sparsity patterns:

✓ A high-level Tile ISA and various flexibility knobs in the architecture

o To accommodate the memory-bound nature of the problems and scale-up:

✓ An accelerator pipeline designed for latency tolerance

6

Tight integration with the cores of a CPU multicore

o SPADE PEs:

• Decoupled, out-of-order vector engines

• Reuse a core’s L2, LLC and STLB

o SPADE CPE:

• Control engine that assigns tiles to PEs

o BBF:

• Bypass Buffer: allows for optional cache

bypassing

o Low area cost:

• All SPADE hardware: 2.5% of host area

to memory

SPADE

PE

L1D

CPU Core

L1D L1I

SPADE

PE

L1D

L2
B

B

F

B

B

F
LLC Slice

STLB

On-chip network

Core 1 …

SPADE

CPE
MEM CTR 0 MEM CTR 1 …

7

SPADE →CPU mode transitions

o Cache hierarchy state and STLB entries are reused in place

o Especial cache operations during SPADE → CPU mode transitions

• SPADE mode → CPU mode:

SPADE L1 caches and BBFs are written back (to L2 and memory) and invalidated

• CPU mode → SPADE mode:

CPU L1 caches are written back to L2 and invalidated

Data that the upcoming SPADE cycle will access through BBFs is written back to memory and inv

8

Tile ISA

Instructions issued by the CPE to the PEs

NotesArgumentsWhat it doesInstruction

Broadcasted to all PEsOperation to perform (SpMM

or SDDMM), base virtual

addresses of sparse and

dense matrices etc.

Initializes the PEsInitialization

Assigned to a single PETile information such as

location of first non-zero and

number of non-zeros in the tile

Executes SpMM or SDDMM

on a tile of the sparse matrix
Tile operation

Times the tile execution for

data reuse and to limit cache

pressure

Pauses tile scheduling by the

CPE until all previous tiles

have been completed

Scheduling Barrier

Broadcasted to all PEsInforms the PEs to write-back

and invalidate L1s and BBFs
WriteBack&Invalidate

Broadcasted to all PEsSignals the termination of the

SPADE mode execution
Termination

9

Tile ISA

Instructions issued by the CPE to the PEs

NotesArgumentsWhat it doesInstruction

Broadcasted to all PEsOperation to perform (SpMM

or SDDMM), base virtual

addresses of sparse and

dense matrices etc.

Initializes the PEsInitialization

Assigned to a single PETile information such as

location of first non-zero and

number of non-zeros in the tile

Executes SpMM or SDDMM

on a tile of the sparse matrix
Tile operation

Times the tile execution for

data reuse and to limit cache

pressure

Pauses tile scheduling by the

CPE until all previous tiles

have been completed

Scheduling Barrier

Broadcasted to all PEsInforms the PEs to write-back

and invalidate L1s and BBFs
WriteBack&Invalidate

Broadcasted to all PEsSignals the termination of the

SPADE mode execution
Termination

10

SPADE is designed for flexibility

✓ Accepts tiles of any size

✓ Dense structures can optionally bypass the caches

✓ Scheduling barriers change timing of tile scheduling for best cache use

o Each of these knobs is tuned based on the input matrix:

• Depending on the input sparse matrix, bypassing can increase runtime by up to 170%

or decrease it by up to 33%

• Depending on the input sparse matrix, barriers can increase runtime by up to 80% or

decrease it by up to 57%

11

SPADE pipeline

o Sparse Data Loader: issues read requests for sparse data

o tOp Generator: generates one tuple operation (tOp) per non-zero

o VR Allocator: allocates VRs and breaks down tOps in vector-sized operations (vOps)

o Dense Data Loader: issues read requests for dense data

o vOp Reservation Stations: support OoO execution in back-end

o WB Manager: periodically writes back Vector Register to the memory subsystem

Sparse

Data

Loader

tOp
Generator

VR
Allocator

VR

File

vOp
Res.

Stations

SIMD

unit

BBF

or L1
BBF

CPE
WB

Mgr
Dense

Data

Loader

Dense back-endvOp

Generator
Sparse front-end

tOp
vOp

Sparse requests overlap with dense requests and computation for latency tolerance

12

Evaluation

o Simulation-based evaluation using SST and DRAMSim3

o Baselines:

• 56-core Intel Icelake CPU

• NVIDIA V100 GPU

• Scaled-up idealized version of the Sextans SpMM accelerator

o Benchmarks: 10 large graphs from SparseSuite

o Prototyped a simplified SPADE in a chip and taped it out using TSMC 65nm

13

Evaluation Highlights

o SPADE delivers high average speedups:

• Over a 56-core Intel Icelake CPU: 2.3x

• Over an NVIDIA V100 GPU:

• 1.3x without considering host-GPU data transfer overhead

• 43.4x considering data transfer overhead

• Over an idealized scaled-up Sextans SpMM accelerator

• 2.5x without considering host-accelerator data transfer overhead

• 52.4x considering data transfer overhead

o Scales well from 224 to 1792 PEs

14

Conclusion

o SPADE is an SpMM/SDDMM accelerator tightly integrated in a CPU multicore

o Eliminates host-accelerator data transfer and address remapping overheads

o Provides architectural flexibility knobs to exploit diverse sparsity patterns

o Delivers substantial speedups over CPUs, GPUs and other accelerators at a low

area and power cost

15

SPADE: A Flexible and Scalable

Accelerator for SpMM and SDDMM

Gerasimos Gerogiannis, Serif Yesil*, Damitha Lenadora,

Dingyuan Cao, Charith Mendis and Josep Torrellas

University of Illinois at Urbana-Champaign

*Now at NVIDIA.

	Slide 1: SPADE: A Flexible and Scalable Accelerator for SpMM and SDDMM
	Slide 2: SpMM and SDDMM
	Slide 3: SpMM and SDDMM
	Slide 4: Pitfalls in Designing an Accelerator for SpMM and SDDMM
	Slide 5: Addressing these Pitfalls with SPADE
	Slide 6: Tight integration with the cores of a CPU multicore
	Slide 7: SPADE CPU mode transitions
	Slide 8: Tile ISA
	Slide 9: Tile ISA
	Slide 10: SPADE is designed for flexibility
	Slide 11: SPADE pipeline
	Slide 12: Evaluation
	Slide 13: Evaluation Highlights
	Slide 14: Conclusion
	Slide 15: SPADE: A Flexible and Scalable Accelerator for SpMM and SDDMM

