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Emerging Software in the Cloud: 
Microservices

o Large monolithic applications decomposed into many small interdependent services

o Each service implements separate functionality 

o Many benefits:
o Scalability
o Design simplicity
o HW management 
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Contributions

� Characterization of microservice 
systems with conventional processors

� Propose µManycore – a processor 
architecture highly optimized for 
microservice workloads
� Chiplet-based design with multiple small 

hardware cache-coherent domains

� Hierarchical leaf-spine interconnection 
network on package

� In-hardware request scheduling and 
context switching

� Tail latency reduction 10.4X, throughput 
improvement 15.5X 3



Mismatch Current Processors vs Microservices
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Current Processors Microservice Environments

Maximize average performance Stringent tail latency constraints

Beefy processors Many requests in parallel. Low instruction-level 
parallelism

Monolithic cache coherence Microservices rarely share writable data

Optimized for long-running, predictable apps 
(prefetchers, branch predictors) Short-running services; dynamic environment



Designing Processors for Tail Latency

� Response time determined 
by the slowest service

� Identify and optimize away 
sources of contention

� On-package network

� Request queuing and 
scheduling

� Context switching 
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Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages
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Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency
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Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency
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Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency
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Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency
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We need a high-bandwidth and low-latency on-

package network



Hotspots in request queuing and  scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency
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Hotspots in request queuing and  scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency
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Hotspots in request queuing and  scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency
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Hotspots in request queuing and  scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency
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Even optimal software queue
 Tail 10x average! 

We need a specialized hardware for request 
queueing and scheduling
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Hotspots in context switching 

� Services spend majority of their execution time blocked, waiting on I/O
� Remote storage accesses, or synchronous calls to other services
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Hotspots in context switching 

� Services spend majority of their execution time blocked, waiting on I/O
� Remote storage accesses, or synchronous calls to other services
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Hotspots in context switching 

� Services spend majority of their execution time blocked, waiting on I/O
� Remote storage accesses, or synchronous calls to other services
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Hotspots in context switching 

� Even highly specialized software context switching penalty not negligible
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Hotspots in context switching 

� Even highly specialized software context switching penalty not negligible
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Hotspots in context switching 

� Even highly specialized software context switching penalty not negligible
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Hardware 
Solution

We need a specialized hardware support for 
context switching



Is chip-wide monolithic cache coherence 
needed?

� Services use RPCs for the communication, no shared memory
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Is chip-wide monolithic cache coherence 
needed?

� Services use RPCs for the communication, no shared memory
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RPC RPC
We will slice the monolithic coherence into many 

small independent coherence domains



Basic unit of µManycore: a hardware cache-
coherent Village
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Hardware for Request Scheduling

� NIC deposits ready requests to the queue

� Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

NIC
Request Queue (circular)

Status
Service ID
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Hardware for Request Scheduling

� NIC deposits ready requests to the queue

� Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction
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Hardware for Context Switching

� Requests can get blocked during execution – need to context switch
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Hardware for Context Switching

NIC
Request Queue (circular)
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29

� Avoid OS invocations and software overheads

� Core saves and restores context in hardware



Hardware for Context Switching
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� Avoid OS invocations and software overheads

� Core saves and restores context in hardware
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� Avoid OS invocations and software overheads

� Core saves and restores context in hardware



Hardware for Context Switching
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� Avoid OS invocations and software overheads

� Core saves and restores context in hardware



Hardware for Context Switching

� Avoid OS invocations and software overheads

� Core saves and restores context in hardware
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Villages grouped into clusters 

� The combination of a few villages, a memory pool, and a network hub à a cluster
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Leaf-spine on-package network

� Many redundant, low-hop count paths between any two clusters

NH NH NH NH NH NH NH NH

NH NH NH NH
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Leaf-spine on-package network

� Many redundant, low-hop count paths between any two clusters
� Even between the same source and destination multiple parallel links
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Hierarchical leaf-spine on-package network

� Many redundant, low-hop count paths between any two clusters
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Evaluation Setup

� 1024-core µManycore

� DeathStarBench microservices

� PinTool to extract traces
� SST for cycle-accurate timing measurements

� McPAT + Cacti for power/area measurements

� Two baselines
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Baseline Number of cores Modeled After Design Point
ServerClass 40 Intel Ice-Lake Same Power as 

µManycore 
LargeManycore 1024 ARM A15 Same Area as 

µManycore 



µManycore Significantly Reduces Tail 
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µManycore Significantly Reduces Tail 
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µManycore Significantly Reduces Tail 
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µManycore Significantly Reduces Tail 
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In high load, tail latency reduced by 16.7x over 
ServerClass and 7.4x over LargeManycore



Conclusion

� Imbalance between current processors and emerging microservice environments
� 𝜇Manycore à an architecture optimized for microservice environments

� 𝜇Manycore delivers high performance for microservice workloads
� 10.4X reduced tail latency

� 15.5X improved throughput
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Simulation Parameters
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ScaleOut == LargeManycore



Tail Latency with Different Loads
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On average, 𝜇Manycore reduces the tail latency 

 over ServerClass by 6.3×, 8.3×, and 16.7
 over ScaleOut by 5.4×, 6.5×, and 7.4×



Tail Latency Breakdown
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On average, the cumulative application of these 
techniques reduces the tail latency by 1.1×, 2.3×, 
3.9×, and 7.4×, respectively



Average Latency with Different Loads
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On average, 𝜇Manycore reduces the average 
latency over ServerClass by 2.3×, 3.2×, and 5.6× 
for loads of 5K, 10K, and 15K RPS, respectively, 
and over ScaleOut by 2.1×, 2.5×, and 3.2× for the 
same loads



Average Latency with Different Loads
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𝜇Manycore reaches a throughput that is 13.9–17.1× higher than the ServerClass. On 
average, 𝜇Manycore improves the throughput by 15.5× and 4.3× over the ServerClass and 
ScaleOut baselines, respectively



Sensitivity Study on Village Sizes
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All configurations are within 15% of each other’s tail latency



Iso-area ServerClass Baseline

� In the iso-power configurations, 𝜇Manycore has 2.9% more area than ScaleOut and 3.1× 
more area than the 40-core ServerClass (i.e., 547.2𝑚𝑚2 for 𝜇Manycore versus 176.1𝑚𝑚2 for 
ServerClass)

� For an iso-area comparison, we keep 𝜇Manycore and ScaleOut unchanged and we scale 
ServerClass to 128 cores, while leaving all the other parameters unmodified

� ServerClass processor improves the performance significantly, matching and sometimes 
slightly outperforming the tail latency of ScaleOut

� ServerClass still has a tail latency that is on average 7.3× higher than the 𝜇Manycore one 
across all loads and applications

�  Also, the 128-core ServerClass processor uses an unacceptably large amount of power, 
namely 3.2× more than 𝜇Manycore.
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