
µManycore:
A Cloud-Native CPU for Tail at Scale

ISCA 2023

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of Illinois at Urbana-Champaign, *Purdue University
1

Emerging Software in the Cloud:
Microservices

o Large monolithic applications decomposed into many small interdependent services

o Each service implements separate functionality

o Many benefits:
o Scalability
o Design simplicity
o HW management

2

Contributions

� Characterization of microservice
systems with conventional processors

� Propose µManycore – a processor
architecture highly optimized for
microservice workloads
� Chiplet-based design with multiple small

hardware cache-coherent domains

� Hierarchical leaf-spine interconnection
network on package

� In-hardware request scheduling and
context switching

� Tail latency reduction 10.4X, throughput
improvement 15.5X 3

Mismatch Current Processors vs Microservices

4

Current Processors Microservice Environments

Maximize average performance Stringent tail latency constraints

Beefy processors Many requests in parallel. Low instruction-level
parallelism

Monolithic cache coherence Microservices rarely share writable data

Optimized for long-running, predictable apps
(prefetchers, branch predictors) Short-running services; dynamic environment

Designing Processors for Tail Latency

� Response time determined
by the slowest service

� Identify and optimize away
sources of contention

� On-package network

� Request queuing and
scheduling

� Context switching

5

Frontend
Server

Mid-Tier
Server

Backend Servers

Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

6

Multi-hop routes

Contention at links

Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency

7
0

5

10

15

1K RPS 5K RPS 10K RPS 50K RPSN
or

m
. T

ai
l L

at
en

cy

Invocation Rate

No Contention

Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency

8
0

5

10

15

1K RPS 5K RPS 10K RPS 50K RPSN
or

m
. T

ai
l L

at
en

cy

Invocation Rate

No Contention 2D Mesh

Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency

9
0

5

10

15

1K RPS 5K RPS 10K RPS 50K RPSN
or

m
. T

ai
l L

at
en

cy

Invocation Rate

No Contention 2D Mesh Fat Tree

Hotspots in on-package network

� Inter-process communication due to RPCs and storage accesses
� Lots of on-package messages

� Contention at the on-package network can hurt the tail latency

10
0

5

10

15

1K RPS 5K RPS 10K RPS 50K RPSN
or

m
. T

ai
l L

at
en

cy

Invocation Rate

No Contention 2D Mesh Fat Tree
We need a high-bandwidth and low-latency on-

package network

Hotspots in request queuing and scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency

11

Hotspots in request queuing and scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency

0

1000

2000

3000

4000

1024 512 256 128 64 32 16 8 4 2 1

N
or

m
. L

at
en

cy

Number of queues in a 1K-core manycore

Tail Average

12

Hotspots in request queuing and scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency

0

1000

2000

3000

4000

1024 512 256 128 64 32 16 8 4 2 1

N
or

m
. L

at
en

cy

Number of queues in a 1K-core manycore

Tail Average

Even optimal software queue
 Tail 10x average!

13

Hotspots in request queuing and scheduling

� Service requests come in bursts and need to be queued before execution

� Design of the queueing system can impact tail latency

0

1000

2000

3000

4000

1024 512 256 128 64 32 16 8 4 2 1

N
or

m
. L

at
en

cy

Number of queues in a 1K-core manycore

Tail Average

Even optimal software queue
 Tail 10x average!

We need a specialized hardware for request
queueing and scheduling

14

Hotspots in context switching

� Services spend majority of their execution time blocked, waiting on I/O
� Remote storage accesses, or synchronous calls to other services

15

RPCIdle

Se
rv

ic
e

in
vo

ca
tio

n

Need to perform frequent
context switches!

Hotspots in context switching

� Services spend majority of their execution time blocked, waiting on I/O
� Remote storage accesses, or synchronous calls to other services

16
0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096 8192

N
or

m
. T

ai
l L

at
en

cy

Context Switch Overhead (cycles)

5K RPS 10K RPS 50K RPS

Hotspots in context switching

� Services spend majority of their execution time blocked, waiting on I/O
� Remote storage accesses, or synchronous calls to other services

17
0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096 8192

N
or

m
. T

ai
l L

at
en

cy

Context Switch Overhead (cycles)

5K RPS 10K RPS 50K RPS

LinuxShinjuku
Shenango
ZygOS

Hotspots in context switching

� Even highly specialized software context switching penalty not negligible

18
0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096 8192

N
or

m
. T

ai
l L

at
en

cy

Context Switch Overhead (cycles)

5K RPS 10K RPS 50K RPS

LinuxShinjuku
Shenango
ZygOS

Hotspots in context switching

� Even highly specialized software context switching penalty not negligible

19
0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096 8192

N
or

m
. T

ai
l L

at
en

cy

Context Switch Overhead (cycles)

5K RPS 10K RPS 50K RPS

LinuxShinjuku
Shenango
ZygOS

Hardware
Solution

Hotspots in context switching

� Even highly specialized software context switching penalty not negligible

20
0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096 8192

N
or

m
. T

ai
l L

at
en

cy

Context Switch Overhead (cycles)

5K RPS 10K RPS 50K RPS

LinuxShinjuku
Shenango
ZygOS

Hardware
Solution

We need a specialized hardware support for
context switching

Is chip-wide monolithic cache coherence
needed?

� Services use RPCs for the communication, no shared memory

21Memory

RPC RPC

Is chip-wide monolithic cache coherence
needed?

� Services use RPCs for the communication, no shared memory

22Memory

RPC RPC
We will slice the monolithic coherence into many

small independent coherence domains

Basic unit of µManycore: a hardware cache-
coherent Village

Village

L-NIC
L-MEM

C

L1

Request Queue

R-NIC
R-MEM

L2

C

L1

C

L1

C

L1

23

Hardware for Request Scheduling

� NIC deposits ready requests to the queue

� Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

NIC
Request Queue (circular)

Status
Service ID

R

Serv-A

W

Serv-A

24

Hardware for Request Scheduling

� NIC deposits ready requests to the queue

� Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

NIC
Request Queue (circular)

Status
Service ID

R

Serv-A

W

Serv-A

25

Hardware for Request Scheduling

� NIC deposits ready requests to the queue

� Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

NIC
Request Queue (circular)

Status
Service ID

R

Serv-A

R

Serv-A

26

Hardware for Request Scheduling

� NIC deposits ready requests to the queue

� Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

NIC
Request Queue (circular)

Status
Service ID

R

Serv-A

F

Serv-A

27

Hardware for Context Switching

� Requests can get blocked during execution – need to context switch

NIC
Request Queue (circular)

Status
Service ID

R

Serv-A

B

Serv-A

28

Hardware for Context Switching

NIC
Request Queue (circular)

State for Req1

Request Context Memory

State for Req2

Status
Service ID

Req Ptr

R

Serv-A

B

Serv-A

29

� Avoid OS invocations and software overheads

� Core saves and restores context in hardware

Hardware for Context Switching

NIC
Request Queue (circular)

State for Req1

Request Context Memory

State for Req2

Status
Service ID

Req Ptr

R

Serv-A

W

Serv-A

30

� Avoid OS invocations and software overheads

� Core saves and restores context in hardware

Hardware for Context Switching

NIC
Request Queue (circular)

State for Req1

Request Context Memory

State for Req2

Status
Service ID

Req Ptr

R

Serv-A

W

Serv-A

31

� Avoid OS invocations and software overheads

� Core saves and restores context in hardware

Hardware for Context Switching

NIC
Request Queue (circular)

State for Req1

Request Context Memory

State for Req2

Status
Service ID

Req Ptr

R

Serv-A

W

Serv-A

32

� Avoid OS invocations and software overheads

� Core saves and restores context in hardware

Hardware for Context Switching

� Avoid OS invocations and software overheads

� Core saves and restores context in hardware

NIC
Request Queue (circular)

State for Req1

Request Context Memory

State for Req2

Status
Service ID

Req Ptr

R

Serv-A

R

Serv-A

33

Villages grouped into clusters

� The combination of a few villages, a memory pool, and a network hub à a cluster

I/OI/O

L-MEM R-MEM

I/O

I/O I/O

Inter-
Package

Network Hub
(NH)

Shared Read-
Mostly Memory

Memory Pool

Village

VillageVillage

R-NIC
R-MEM

C

L1

Request Queue

L-NIC
L-MEM

Village

L2

C

L1

C

L1

C

L1

L-NIC
L-MEM

C

L1

Request Queue

R-NIC
R-MEM

L2

C

L1

C

L1

C

L1

C

L1

Request Queue

L2

C

L1

C

L1

C

L1

L-NIC
L-MEM

R-NIC
R-MEM

C

L1

Request Queue

L2

C

L1

C

L1

C

L1

R-NIC
R-MEM

L-NIC
L-MEM

Intra-
Package 34

Leaf-spine on-package network

� Many redundant, low-hop count paths between any two clusters

NH NH NH NH NH NH NH NH

NH NH NH NH

35Clusters

Leaf-spine on-package network

� Many redundant, low-hop count paths between any two clusters
� Even between the same source and destination multiple parallel links

NH NH NH NH NH NH NH NH

NH NH NH NH

36

Hierarchical leaf-spine on-package network

� Many redundant, low-hop count paths between any two clusters

NH NH NH NH NH NH NH NH

NH NH NH NH

NH NH NH NH

NH NH NH NH NH NH NH NH

NH NH NH NH

37

Evaluation Setup

� 1024-core µManycore

� DeathStarBench microservices

� PinTool to extract traces
� SST for cycle-accurate timing measurements

� McPAT + Cacti for power/area measurements

� Two baselines

38

Baseline Number of cores Modeled After Design Point
ServerClass 40 Intel Ice-Lake Same Power as

µManycore
LargeManycore 1024 ARM A15 Same Area as

µManycore

µManycore Significantly Reduces Tail

39

0

0.2

0.4

0.6

0.8

1

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

N
or

m
. T

ai
l L

at
en

cy

DeathStarBench Microservices

ServerClass

µManycore Significantly Reduces Tail

40

0

0.2

0.4

0.6

0.8

1

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

N
or

m
. T

ai
l L

at
en

cy

DeathStarBench Microservices

ServerClass LargeManycore

µManycore Significantly Reduces Tail

41

0

0.2

0.4

0.6

0.8

1

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

N
or

m
. T

ai
l L

at
en

cy

DeathStarBench Microservices

ServerClass LargeManycore µManycore

µManycore Significantly Reduces Tail

42

0

0.2

0.4

0.6

0.8

1

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

N
or

m
. T

ai
l L

at
en

cy

DeathStarBench Microservices

ServerClass LargeManycore µManycore

In high load, tail latency reduced by 16.7x over
ServerClass and 7.4x over LargeManycore

Conclusion

� Imbalance between current processors and emerging microservice environments
� 𝜇Manycore à an architecture optimized for microservice environments

� 𝜇Manycore delivers high performance for microservice workloads
� 10.4X reduced tail latency

� 15.5X improved throughput

43

µManycore:
A Cloud-Native CPU for Tail at Scale

ISCA 2023

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of Illinois at Urbana-Champaign, *Purdue University
44

Simulation Parameters

45

ScaleOut == LargeManycore

Tail Latency with Different Loads

46

On average, 𝜇Manycore reduces the tail latency

 over ServerClass by 6.3×, 8.3×, and 16.7
 over ScaleOut by 5.4×, 6.5×, and 7.4×

Tail Latency Breakdown

47

On average, the cumulative application of these
techniques reduces the tail latency by 1.1×, 2.3×,
3.9×, and 7.4×, respectively

Average Latency with Different Loads

48

On average, 𝜇Manycore reduces the average
latency over ServerClass by 2.3×, 3.2×, and 5.6×
for loads of 5K, 10K, and 15K RPS, respectively,
and over ScaleOut by 2.1×, 2.5×, and 3.2× for the
same loads

Average Latency with Different Loads

49

𝜇Manycore reaches a throughput that is 13.9–17.1× higher than the ServerClass. On
average, 𝜇Manycore improves the throughput by 15.5× and 4.3× over the ServerClass and
ScaleOut baselines, respectively

Sensitivity Study on Village Sizes

50

All configurations are within 15% of each other’s tail latency

Iso-area ServerClass Baseline

� In the iso-power configurations, 𝜇Manycore has 2.9% more area than ScaleOut and 3.1×
more area than the 40-core ServerClass (i.e., 547.2𝑚𝑚2 for 𝜇Manycore versus 176.1𝑚𝑚2 for
ServerClass)

� For an iso-area comparison, we keep 𝜇Manycore and ScaleOut unchanged and we scale
ServerClass to 128 cores, while leaving all the other parameters unmodified

� ServerClass processor improves the performance significantly, matching and sometimes
slightly outperforming the tail latency of ScaleOut

� ServerClass still has a tail latency that is on average 7.3× higher than the 𝜇Manycore one
across all loads and applications

� Also, the 128-core ServerClass processor uses an unacceptably large amount of power,
namely 3.2× more than 𝜇Manycore.

51

