HetCore: TFET-CMOS Hetero-Device Architecture for CPUs and GPUs

Bhargava Gopireddy, Dimitrios Skarlatos, Wenjuan Zhu, Josep Torrellas
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

ISCA 2018
Wednesday, 11:20am
Session 9B: GPUs
Ideal Switch

\[I_d \text{ (log)} \]

\[V_{dd} \]

\[V_G \]

Voltage

Current
Ideal Switch vs Si-MOSFET

Voltage V_G vs Current I_d (log) plot:

- **Ideal Switch**
 - Current I_d remains constant at V_{dd} until V_G reaches $V_{dd-CMOS}$.
 - I_d increases exponentially beyond $V_{dd-CMOS}$.

- **MOSFET**
 - Current I_d starts to rise significantly above $V_{dd-CMOS}$.

Key parameters:
- V_{dd}: Supply voltage before transitioning to CMOS.
- $V_{dd-CMOS}$: Supply voltage after transitioning to CMOS.
- I_d (log): Logarithmic scale for current.
TFET vs MOSFET

Current

Voltage

V_{dd}-CMOS

V_{dd}-TFET

V_G

Ideal Switch

MOSFET

TFET

Lower V_{dd}
TFET vs CMOS: Energy and Delay

TFET and CMOS manufacturing processes are compatible → Share same chip

\[
\begin{align*}
&\text{V}_{dd} \text{ at 15nm:} \\
&\text{TFET: 0.4V} \\
&\text{CMOS: 0.73V}
\end{align*}
\]
Goal: Energy Efficient Core Design with TFETs

• Design a core that is
 ▪ As energy efficient as TFET
 ▪ As fast as CMOS

• Approach: Use both CMOS and TFET devices within the core

• How: Selectively replace CMOS units by TFET ones; that are
 ▪ Power consuming
 ▪ Amenable to pipelining or not very latency sensitive
Contributions

• Propose the concept of a hetero-device TFET-CMOS core architecture, called HetCore

• Design of an “Advanced HetCore” for CPUs and GPUs
 ▪ Customizes known microarchitecture optimizations

• At iso-power, an 8-core HetCore CPU has a 68% lower ED^2 and is 32% faster than a 4-core CMOS CPU

• Similar results are obtained for GPUs
Replacing CMOS Units with TFET in Pipeline

- Pipeline twice as deep while maintaining the same frequency

Selected units must be:
Amenable to pipelining and/or not very latency sensitive
Baseline HetCore Design

CPU

Last Level Cache

L2 L2 L2 L2

IL1 DL1 IL1 DL1 IL1 DL1 IL1 DL1

Core 0 Core 1 Core 2 Core 3

TFET

CMOS
Baseline HetCore Design

L2 and LLC primarily consume leakage power → TFETs can reduce leakage power substantially
Baseline HetCore Design

DL1 and IL1 consume high dynamic as well as leakage power
Baseline HetCore Design

DL1 and IL1 consume high dynamic as well as leakage power

DL1 latency can be partially hidden in an Out-of-Order machine
Baseline HetCore Design

Both FPU and ALU consume significant power and can be pipelined.

FPU: Pipeline deeper and exploit ILP

ALU: Impact on performance, but energy savings justify its placement in TFET.
Baseline HetCore Design

Both FPU and ALU consume significant power and can be pipelined

FPU: Pipeline deeper and exploit ILP

ALU: Impact on performance, but energy savings justify its placement in TFET
Baseline HetCore GPU Design

- SIMD FPU can be pipelined

Diagram showing a GPU with multiple SIMD FPUs and RF modules.
Baseline HetCore GPU Design

SIMD FPU can be pipelined

RF consumes high energy
Baseline HetCore GPU Design

SIMD FPU can be pipelined

RF consumes high energy
Baseline HetCore with CPU and GPU

Base HetCore saves energy compared to CMOS but it degrades performance.
Advanced HetCore Design

• New opportunities for micro-architectural optimization
 – Base HetCore is an unbalanced design
 – A small power penalty maybe a good tradeoff for large gains in performance

• For CPU:
 – Asymmetric DL1 cache
 – Dual cluster ALU

• For GPU:
 – Register file cache
DL1 Cache in TFET

![Diagram showing the DL1 Cache in TFET with components labeled as follows:
- Index Address
- Tag Address
- CAM Match
- Hit
- Miss to L2
- TFET Tag 0
- TFET Tag 1
- TFET Tag 6
- TFET Tag 7
- TFET Data Way 0
- TFET Data Way 1
- TFET Data Way 6
- TFET Data Way 7
- Data to core
]
Asymmetric DL1 Cache

Check CMOS way before accessing TFET ways
CMOS way holds MRU cacheline and can respond in 1 cycle
Performance Impact of TFET ALU

TFET ALU doubles the latency of most common operations

Prevents back-to-back issue of dependent instructions

Increases misprediction penalty
Dual Speed ALU Cluster

In dispatch stage, identify the producer-consumer pairs in small window, and steer the producer to CMOS ALU.

Steering algorithm: minimize bubbles, maximize power saving and balance overall utilization [Baniasadi et al]

Mis-steering a producer is okay; as the penalty is only one cycle for consumer
Register File Cache in GPU

- TFET register file introduces additional cycles in critical path

- Use: Register file cache, similar to an asymmetric cache, to hold a few registers closer to the FPU
 - Proposed earlier to reduce energy consumption [Gebhart et al.]
 - We use it to reduce the access latency by having the register file cache in CMOS
Evaluation Methodology

4 out-of-order cores in CPU, 8 Compute Units in GPU (AMD Southern Islands)

Multi2sim Simulator
- CPU: SPLASH2 and Parsec
- GPU: AMD-SDK-APP benchmark suite

Configurations:
- BaseCMOS, BaseTFET
- Base HetCore
- Adv HetCore → Base HetCore with previous mitigations
- Adv HetCore-2X → Twice as many cores within the same power budget as BaseCMOS
HetCore – CPU Results

- Avg Execution Time
- Avg Energy
- Avg ED²

Normalized to BaseCMOS

- BaseCMOS
- BaseTFET
- BaseHetCore
- AdvHetCore
- AdvHetCore-2X
HetCore – CPU Results

Average Execution Time

Normalized to BaseCMOS

BaseCMOS
BaseTFET
BaseHetCore
AdvHetCore
AdvHetCore-2X

Very slow !!

HetCore: TFET-CMOS Hetero-Device Architecture for CPUs and GPUs
Base HetCore – CPU Results

- Avg Execution Time: Base CMOS = 1.95
- Avg Energy: Adv HetCore = 39%
- Avg ED²: Adv HetCore - 2X = 28%

Still too slow

Normalized to Base CMOS

HetCore: TFET-CMOS Hetero-Device Architecture for CPUs and GPUs
Adv HetCore – CPU Results

High energy efficiency w/ mild slowdown

Normalized to BaseCMOS

Avg Execution Time

Avg Energy

Avg ED^2

BaseCMOS
BaseTFET
BaseHetCore
AdvHetCore
AdvHetCore-2X

HetCore: TFET-CMOS Hetero-Device Architecture for CPUs and GPUs
Adv HetCore-2X at Iso-power to BaseCMOS

Adv HetCore enables 2X cores in the same power budget!
Adv HetCore GPU

- Adv HetCore-GPU
 - 40% lower Energy
 - 20% slowdown

- Adv HetCore-GPU with 2X EUs at iso-power
 - 60% lower ED^2
 - 30% faster
Conclusion

• Proposed the concept of a hetero-device TFET-CMOS core architecture for high performance and energy efficiency

• Designed an Advanced HetCore for CPUs and GPUs
 – Customizes known microarchitecture optimizations

• At iso-power, an 8-core HetCore CPU has a 68% lower ED\(^2\) and is 32% faster than a 4-core CMOS CPU

• Similar results are obtained for GPUs
HetCore: TFET-CMOS Hetero-Device Architecture for CPUs and GPUs

Bhargava Gopireddy, Dimitrios Skarlatos, Wenjuan Zhu, Josep Torrellas
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

ISCA 2018
Wednesday, 11:20am
Session 9B: GPUs