
1 

SigRace: Signature-Based Data 

Race Detection 

Abdullah Muzahid, Dario Suarez*, 

Shanxiang Qi & Josep Torrellas 

Computer Science Department 

University of Illinois at Urbana-Champaign 

http://iacoma.cs.uiuc.edu 

*Universidad de Zaragoza, Spain 



2 

Debugging Multithreaded Programs 

 

“Debugging a multithreaded program has a lot in 

common with medieval torture methods” 
 

    -- Random quote found via Google search 



3 

Data Race 

• Two threads access the same variable without intervening 

synchronization and at least one is a write 

T1 T2 

lock L 

unlock L 

x++ 

x++ 

 

• Hard to detect and reproduce 

• Common bug 



4 

Dynamic Data Race Detection 

• Mainly two approaches 



5 

Dynamic Data Race Detection 

• Mainly two approaches 

– Lockset: Finds violation of locking discipline 



6 

Dynamic Data Race Detection 

• Mainly two approaches 

– Lockset: Finds violation of locking discipline 

– Happened-Before: Finds concurrent conflicting accesses 



7 

Happened-Before Approach 



8 

Happened-Before Approach 

[0, 0] [0, 0] 

Thread 0 Thread 1 

 



9 

Happened-Before Approach 

Lock L 

[0, 0] 

[1, 0] 

[0, 0] 

Thread 0 Thread 1 



10 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 



11 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 



12 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 



13 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[0, 1] 



14 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

+ 

[0, 1] 



15 

Happened-Before Approach 

• Epoch : sync to sync 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 



16 

Happened-Before Approach 

• Epoch : sync to sync 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 



17 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 

• Epoch : sync to sync 



18 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 

• Epoch : sync to sync 



19 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 

• Epoch : sync to sync 



20 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 

• Epoch : sync to sync 

• a, b happened before e 



21 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 

• Epoch : sync to sync 

• a, b happened before e 



22 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 

• Epoch : sync to sync 

• a, b happened before e 

• c, d unordered 



23 

Happened-Before Approach 

Lock L 

Unlock L 

[0, 0] 

[1, 0] 

[2, 0] 

[0, 0] 

Thread 0 Thread 1 

Lock L 

[2, 1] 

a 

b 

c 

d 

e 

• Epoch : sync to sync 

• a, b happened before e 

• c, d unordered 

= x 

x = 

Data Race 



24 

Software Implementation 

• Need to instrument every memory access 

– 10x – 50x slowdown  

– Not suitable for production runs  



25 

Hardware Implementation 



26 

Hardware Implementation 

P1 P2 

… … C1 C2 



27 

Hardware Implementation 

P1 P2 

… … 

TS TS 

C1 C2 



28 

Hardware Implementation 

P1 P2 

… … 
x ts1 

TS TS 

C1 C2 



29 

Hardware Implementation 

P1 P2 

… … 
x x ts1 ts2 

ts2 … TS TS 

C1 C2 

WR 



30 

Hardware Implementation 

P1 P2 

… … 
x x ts1 ts2 

ts2 … 

ts2 

check 

TS TS 

C1 C2 

WR 



31 

Limitations of HW Approaches 



32 

Limitations of HW Approaches 

P1 P2 

… … 
… 

C1 C2 

• Modify cache and coherence protocol 



33 

Limitations of HW Approaches 

P1 P2 

… … 
… 

C1 C2 

• Modify cache and coherence protocol 

• Perform checking at least on every coherence transaction 

ts1 
ts2 

ts2 

check 



34 

Limitations of HW Approaches 

P1 P2 

… … C1 C2 

• Modify cache and coherence protocol 

• Perform checking at least on every coherence transaction 

• Lose detection ability when cache line is displaced or 

invalidated 



35 

Our Contributions 

• SigRace: Novel HW mechanism for race detection 

based on signatures 

– Simple HW 

• Cache and coherence protocol are unchanged 

– Higher coverage than existing HW schemes 

• Detect races even if the line is displaced/invalidated 

• SigRace finds 150% more injected races than a 

state-of-the-art HW proposal 

– Usable on-the-fly in production runs 



36 

Outline 

• Motivation 

• Main Idea 

• Implementation 

• Results 

• Conclusions 



37 

Main Idea 

Address Signature + Happened-before 



38 

Hardware Address Signatures 

[Ceze et al, ISCA06] 

… 
… 

ROB 

address 
ld/st 



39 

Hardware Address Signatures 



40 

Hardware Address Signatures 

• Logical AND for intersection 

• Has false positives but not false negatives 



41 

Using Signatures for Race Detection 

sync 

sync 

Epoch 



42 

Using Signatures for Race Detection 

 

sync 

sync 

Epoch Sig TS 



43 

Using Signatures for Race Detection 

Block 

• Block is a fixed number of dynamic instructions             

(not a cache block or basic block or atomic block) 

sync 

sync 

Epoch Sig1 TS1 



44 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

 Race Detection 

Module 

Sig1 TS1 



45 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch Ø TS1 

 Race Detection 

Module 



46 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

Sig2 TS1 

 Race Detection 

Module 



47 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

Sig2 TS1 

 Race Detection 

Module 



48 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

Ø TS1 

 Race Detection 

Module 



49 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

Sig3 TS2 

 Race Detection 

Module 



50 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

Sig3 TS2 

 Race Detection 

Module 



51 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

Sig3 TS2 

 Race Detection 

Module 



52 

Using Signatures for Race Detection 

Block 

 

sync 

sync 

Epoch 

Sig3 TS2 Sig Ո Sig 

 Race Detection 

Module 



53 

On Chip Race Detection Module 

(RDM) 



54 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

Chip 

RDM 



55 

On Chip Race Detection Module 

(RDM) 

P1 P2 

T1 R1 W1 

Q1 Q2 

Chip 

RDM 



56 

On Chip Race Detection Module 

(RDM) 

P1 P2 

T1 R1 W1 

Q1 Q2 

Chip 

RDM 



57 

On Chip Race Detection Module 

(RDM) 

P1 P2 

T1 R1 W1 

Q1 Q2 

Chip 

RDM 



58 

On Chip Race Detection Module 

(RDM) 

P1 P2 

T2 R2 W2 

Q1 Q2 

T1 R1 W1 

Chip 

RDM 



59 

On Chip Race Detection Module 

(RDM) 

P1 P2 

T2 R2 W2 

Q1 Q2 

T1 R1 W1 

Chip 

RDM 



60 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

T2 R2 W2 
T1 R1 W1 

Chip 

RDM 



61 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

T2 R2 W2 
T1 R1 W1 

TJ RJ WJ 

If T2 & TJ unordered 

   R2 Ո WJ 

  W2 Ո WJ 

  W2 Ո RJ 

       Else stop 

Chip 

RDM 



62 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

T2 R2 W2 
T1 R1 W1  TJ` RJ` WJ` 

If T2 & TJ` unordered 

   R2 Ո WJ` 

  W2 Ո WJ` 

  W2 Ո RJ` 

       Else stop 

Chip 

RDM 



63 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

T2 R2 W2 
T1 R1 W1 

 TJ” RJ” WJ” 

If T2 & TJ” unordered 

   R2 Ո WJ” 

  W2 Ո WJ” 

  W2 Ո RJ” 

       Else stop 

Chip 

RDM 



64 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

T2 R2 W2 
T1 R1 W1 

 TJ”` RJ”` WJ”` 

If T2 & TJ”` unordered 

   R2 Ո WJ”` 

  W2 Ո WJ”` 

  W2 Ո RJ”` 

       Else stop 

Chip 

RDM 



65 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

T2 R2 W2 
T1 R1 W1 

 TJ”` RJ”` WJ”` 

If T2 & TJ”` unordered 

   R2 Ո WJ”` 

  W2 Ո WJ”` 

  W2 Ո RJ”` 

       Else stop 

Chip 

RDM 

Done in Background 



66 

On Chip Race Detection Module 

(RDM) 

P1 P2 

Q1 Q2 

T2 R2 W2 
T1 R1 W1 

 TJ”` RJ”` WJ”` 

If T2 & TJ”` unordered 

   R2 Ո WJ”` 

  W2 Ո WJ”` 

  W2 Ո RJ”` 

       Else stop 

Chip 

RDM 

False Positives 



67 

Re-execution 

• Needed for 

– Discard if a false positive 

– Identify the accesses involved 



68 

Support for Re-execution 

• Save synchronization history in TS Log 

– Timestamp at sync points 

• Log inputs (interrupts, sys calls, etc) 

• Take periodic checkpoints: ReVive [Prvulovic et al, ISCA02] 



69 

Modes of Operation 

• Normal Execution 

• Re-Execution: Bring the program to just before the race 

• Race Analysis: Pinpoint the racy accesses or discarding the 

false positive 



70 

SigRace Re-execution Mode 

• Can be done in another machine 



71 

SigRace Re-execution Mode 

• Can be done in another machine 

• Periodic checkpoint of memory state 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 



72 

SigRace Re-execution Mode 

• Can be done in another machine 

• Periodic checkpoint of memory state 

sync 

sync 

sync 

sync 

sync 

checkpoint 

s1 

s2 
Data Race 

T0 T1 T2 



73 

SigRace Re-execution Mode 

• Can be done in another machine 

• Periodic checkpoint of memory state 

sync 

sync 

sync 

sync 

sync 

checkpoint 

s1 

s2 
Data Race 

Ո 

Conflict Sig Conflict Sig 

T0 T1 T2 



74 

SigRace Re-execution Mode 

• Can be done in another machine 

• Periodic checkpoint of memory state 

sync 

sync 

sync 

sync 

sync 

checkpoint 

s1 

s2 
Data Race 

Ո 

Conflict Sig Conflict Sig 

checkpoint 
T0 T1 T2 T0 T1 T2 



75 

SigRace Re-execution Mode 

• Can be done in another machine 

• Periodic checkpoint of memory state 

sync 

sync 

sync 

sync 

sync 

checkpoint 

s1 

s2 
Data Race 

Ո 

Conflict Sig Conflict Sig 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 T0 T1 T2 

Use the TS Log 



76 

SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 



77 

SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 



78 

SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 

Conflict Sig 
Conflict Sig 

ld 
Ո 



79 

SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 

Conflict Sig 
Conflict Sig 

ld 

log 

Ո 



80 

SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 

Conflict Sig 
Conflict Sig 

ld 

log 

sync sync 

Ո 



81 

SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 

log 

sync sync 

log 



82 

SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 

log 

sync sync 

log 

• Pinpoints racy addresses or, 

• Identifies and discards false positives  



83 

Outline 

• Motivation 

• Main Idea 

• Implementation 

• Results 

• Conclusions 



84 

New Instructions 

• collect_on 

– Enable  R and W address collection in current thread 



85 

New Instructions 

• collect_on 

– Enable  R and W address collection in current thread 

• collect_off 

– Disable R and W address collection in current thread 



86 

New Instructions 

• sync_reached 

 

 



87 

New Instructions 

• sync_reached 

– Dump TS, R and W 

 

 

P 

RDM 

Network 

TS  R  W 



88 

New Instructions 

• sync_reached 

– Dump TS, R and W 

– Clear signatures 

 

 

P 

RDM 

Network 

TS  Ø  Ø 



89 

New Instructions 

• sync_reached 

– Dump TS, R and W 

– Clear signatures 

– Update TS 

 

 

P 

RDM 

Network 

TS`  Ø  Ø 



90 

Modifications in Sync Libraries 



91 

Modifications in Sync Libraries 

• Synchronization object 

 variable timestamp 



92 

Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 

 

variable timestamp 

UNLOCK („{ 

}‟) 

unlock($1.lock) 



93 

Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 

 

variable timestamp 

UNLOCK („{ 

}‟) 

unlock($1.lock) 

sync_reached 

RDM 

Network 

TS  R  W 
P 



94 

Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 

 

variable timestamp 

UNLOCK („{ 

}‟) 

unlock($1.lock) 

sync_reached 

RDM 

Network 

TS  Ø  Ø 
P 



95 

Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 

 

variable timestamp 

UNLOCK („{ 

}‟) 

unlock($1.lock) 

sync_reached 

RDM 

Network 

TS  Ø  Ø 
P 



96 

Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 

 

variable timestamp 

UNLOCK („{ 

}‟) 

unlock($1.lock) 

sync_reached 

$1.timestamp = TS lock TS 



97 

Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 

 

variable timestamp 

UNLOCK („{ 

}‟) 

unlock($1.lock) 

sync_reached 

$1.timestamp = TS 



98 

Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 

 

variable timestamp 

UNLOCK („{ 

}‟) 

unlock($1.lock) 

sync_reached 

$1.timestamp = TS 

AppendtoTSLog(TS) TS Log TS 



99 

Modifications in Sync Libraries 

• Synchronization object 

 

• Lock macro 

 

variable timestamp 

LOCK („{ 

}‟) 

lock($1.lock) 

… 

… 



100 

Modifications in Sync Libraries 

• Synchronization object 

 

• Lock macro 

 

variable timestamp 

LOCK („{ 

}‟) 

lock($1.lock) 

… 

TS = GenerateTS (TS, 

$1.timestamp) 

lock timestamp 

… 



101 

Modifications in Sync Libraries 

• Synchronization object 

 

• Lock macro 

 

variable timestamp 

LOCK („{ 

}‟) 

lock($1.lock) 

… 

TS = GenerateTS (TS, 

$1.timestamp) 

lock timestamp 

… 

Transparent to Application Code 



102 

Other Topics  in Paper 

• Easy to virtualize 

• Queue Overflow 

• Detailed HW structures 

 

 



103 

Outline 

• Motivation 

• Main Idea 

• Implementation 

• Results 

• Conclusions 



104 

Experimental Setup 

• PIN – Binary Instrumention Tool 

• Default parameters 

 

 

 

 

 

• Benchmarks: SPLASH2, PARSEC 

 

–  # of proc: 8 

–  Signature size: 2 Kbits 

–  Block size: 2,000 ins 

–  Queue size: 16 entries 

–  Checkpoint interval: 1 Million ins 



105 

Race Detection Ability 

• Three configurations 

– SigRace Default 

– SigRace Ideal : Stores every signature between 2 

checkpoints 

– ReEnact [Prvulovic et al, ISCA03]: Cache based 

approach with timestamp per word 



106 

Race Detection Ability 

App Ideal 

SigRace 

Default 

SigRce 

ReEnact 

Cholesky 16 16 16 

Barnes 11 11 6 

Volrend 27 27 18 

Ocean 1 1 1 

Radiosity 15 15 12 

Raytrace 4 4 3 

Water-sp 8 4 2 

Streamclus

ter 
13 12 13 

Total 95 90 70 



107 

Race Detection Ability 

• More coverage than 

ReEnact 
App Ideal 

SigRace 

Default 

SigRce 

ReEnact 

Cholesky 16 16 16 

Barnes 11 11 6 

Volrend 27 27 18 

Ocean 1 1 1 

Radiosity 15 15 12 

Raytrace 4 4 3 

Water-sp 8 4 2 

Streamclus

ter 
13 12 13 

Total 95 90 70 



108 

Race Detection Ability 

• More coverage than 

ReEnact 

• Coverage comparable 

to ideal configuration 

App Ideal 

SigRace 

Default 

SigRce 

ReEnact 

Cholesky 16 16 16 

Barnes 11 11 6 

Volrend 27 27 18 

Ocean 1 1 1 

Radiosity 15 15 12 

Raytrace 4 4 3 

Water-sp 8 4 2 

Streamclus

ter 
13 12 13 

Total 95 90 70 



109 

Injected Races 

• Removed one dynamic sync per run 

• Each application runs 25 times with diff sync 

elimination 



110 

Injected Races 



111 

Injected Races 

• More overall coverage than 

ReEnact 

 



112 

Injected Races 

• More overall coverage than 

ReEnact 

 – 150% more coverage 

 



113 

Injected Races 

• More overall coverage than 

ReEnact 

 – 150% more coverage 

 



114 

Conclusions 

• Proposed SigRace:  

– Simple HW 

• Cache and coherence protocol are unchanged 

– Higher coverage than existing HW schemes 

• Detect races even if the line is displaced/invalidated 

– Usable on-the-fly in production runs 

• SigRace finds 150% more injected races than 

word-based ReEnact 



115 

SigRace: Signature-Based Data 

Race Detection 

Abdullah Muzahid, Dario Suarez*, 

Shanxiang Qi & Josep Torrellas 

Computer Science Department 

University of Illinois at Urbana-Champaign 

http://iacoma.cs.uiuc.edu 

*Universidad de Zaragoza, Spain 



116 

Back Up Slides 



117 

Execution Overhead 

• No overhead in generating signatures (HW) 

• Additional instructions are negligible 

• Main overheads 

– Checkpointing (ReVive – 6.3%) 

– Network traffic (63 bytes per 1000 ins - compressed) 

– Re-execution (depends on false positives & race position) 

• Can be done offline 



118 

Network Traffic Overhead 

 

63 

 ̴1 cache line 



119 

Re-execution Overhead 

• Instructions re-executed until the first true data race is 

analyzed are shown as overhead 

• In this process, it may also encounter many false positive 

races 

• Instructions re-executed to analyze only the true race are 

shown as true overhead 

• Instructions re-executed to filter out the false positives are 

shown as false overhead 



120 

Re-execution Overhead 

22% 

Modest 

overhead 



121 

False Positives 

• Parallel bloom filters with H3 hash function 
 

1.57% 

Low False 

Positive 



122 

Virtualization 

 



123 

Virtualization 

• RDM uses as many queues as the number of threads 

• Timestamp is accessed by thread id 

• Thread id remains same even after migration 

• Timestamps, flags, conflict signature are saved and 

restored at context switch 

• RDM intersects incoming signatures against all other 

threads‟(even inactive ones) signatures 

• Threads can be re-executed without any scheduling 

constraints 



124 

Scalability 

• For small # of proc., scalability is not a problem 

• The operation of RDM can be pipelined 

– Simple repetitive operation 

• Network traffic (compressed message) around 

63Bytes/thousand ins 

• Checkpoint is an issue. 


