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Debugging Multithreaded Programs 

 

“Debugging a multithreaded program has a lot in 

common with medieval torture methods” 
 

    -- Random quote found via Google search 
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Data Race 

• Two threads access the same variable without intervening 

synchronization and at least one is a write 

T1 T2 

lock L 

unlock L 

x++ 

x++ 

 

• Hard to detect and reproduce 

• Common bug 
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Dynamic Data Race Detection 

• Mainly two approaches 

– Lockset: Finds violation of locking discipline 

– Happened-Before: Finds concurrent conflicting accesses 
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Happened-Before Approach 

• Epoch : sync to sync 
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Happened-Before Approach 
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Software Implementation 

• Need to instrument every memory access 

– 10x – 50x slowdown  

– Not suitable for production runs  
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Hardware Implementation 
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Limitations of HW Approaches 

P1 P2 

… … 
… 

C1 C2 

• Modify cache and coherence protocol 

• Perform checking at least on every coherence transaction 
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Limitations of HW Approaches 

P1 P2 

… … C1 C2 

• Modify cache and coherence protocol 

• Perform checking at least on every coherence transaction 

• Lose detection ability when cache line is displaced or 

invalidated 
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Our Contributions 

• SigRace: Novel HW mechanism for race detection 

based on signatures 

– Simple HW 

• Cache and coherence protocol are unchanged 

– Higher coverage than existing HW schemes 

• Detect races even if the line is displaced/invalidated 

• SigRace finds 150% more injected races than a 

state-of-the-art HW proposal 

– Usable on-the-fly in production runs 
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Outline 

• Motivation 

• Main Idea 

• Implementation 

• Results 

• Conclusions 
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Main Idea 

Address Signature + Happened-before 



38 

Hardware Address Signatures 

[Ceze et al, ISCA06] 

… 
… 
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Hardware Address Signatures 
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Hardware Address Signatures 

• Logical AND for intersection 

• Has false positives but not false negatives 
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Using Signatures for Race Detection 
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Using Signatures for Race Detection 

Block 

• Block is a fixed number of dynamic instructions             

(not a cache block or basic block or atomic block) 
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On Chip Race Detection Module 
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On Chip Race Detection Module 
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Re-execution 

• Needed for 

– Discard if a false positive 

– Identify the accesses involved 
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Support for Re-execution 

• Save synchronization history in TS Log 

– Timestamp at sync points 

• Log inputs (interrupts, sys calls, etc) 

• Take periodic checkpoints: ReVive [Prvulovic et al, ISCA02] 
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Modes of Operation 

• Normal Execution 

• Re-Execution: Bring the program to just before the race 

• Race Analysis: Pinpoint the racy accesses or discarding the 

false positive 
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SigRace Re-execution Mode 

• Can be done in another machine 
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SigRace Re-execution Mode 

• Can be done in another machine 

• Periodic checkpoint of memory state 
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SigRace Analysis Mode 
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SigRace Analysis Mode 

sync 

sync 

sync 

sync 

sync 

checkpoint 
T0 T1 T2 

log 

sync sync 

log 

• Pinpoints racy addresses or, 

• Identifies and discards false positives  
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New Instructions 
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Modifications in Sync Libraries 

• Synchronization object 
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Modifications in Sync Libraries 
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Modifications in Sync Libraries 

• Synchronization object 

 

• Unlock macro 
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Modifications in Sync Libraries 
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Modifications in Sync Libraries 

• Synchronization object 
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Modifications in Sync Libraries 

• Synchronization object 

 

• Lock macro 

 

variable timestamp 

LOCK („{ 

}‟) 

lock($1.lock) 

… 

TS = GenerateTS (TS, 

$1.timestamp) 

lock timestamp 

… 

Transparent to Application Code 
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Other Topics  in Paper 

• Easy to virtualize 

• Queue Overflow 

• Detailed HW structures 
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Outline 

• Motivation 
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Experimental Setup 

• PIN – Binary Instrumention Tool 

• Default parameters 

 

 

 

 

 

• Benchmarks: SPLASH2, PARSEC 

 

–  # of proc: 8 

–  Signature size: 2 Kbits 

–  Block size: 2,000 ins 

–  Queue size: 16 entries 

–  Checkpoint interval: 1 Million ins 
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Race Detection Ability 

• Three configurations 

– SigRace Default 

– SigRace Ideal : Stores every signature between 2 

checkpoints 

– ReEnact [Prvulovic et al, ISCA03]: Cache based 

approach with timestamp per word 
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Race Detection Ability 

App Ideal 

SigRace 

Default 

SigRce 

ReEnact 

Cholesky 16 16 16 

Barnes 11 11 6 

Volrend 27 27 18 

Ocean 1 1 1 

Radiosity 15 15 12 

Raytrace 4 4 3 

Water-sp 8 4 2 

Streamclus

ter 
13 12 13 

Total 95 90 70 
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Race Detection Ability 

• More coverage than 

ReEnact 

• Coverage comparable 

to ideal configuration 

App Ideal 

SigRace 

Default 

SigRce 

ReEnact 

Cholesky 16 16 16 

Barnes 11 11 6 

Volrend 27 27 18 

Ocean 1 1 1 

Radiosity 15 15 12 

Raytrace 4 4 3 

Water-sp 8 4 2 
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ter 
13 12 13 
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Injected Races 

• Removed one dynamic sync per run 

• Each application runs 25 times with diff sync 

elimination 
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Conclusions 

• Proposed SigRace:  

– Simple HW 

• Cache and coherence protocol are unchanged 

– Higher coverage than existing HW schemes 

• Detect races even if the line is displaced/invalidated 

– Usable on-the-fly in production runs 

• SigRace finds 150% more injected races than 

word-based ReEnact 
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Execution Overhead 

• No overhead in generating signatures (HW) 

• Additional instructions are negligible 

• Main overheads 

– Checkpointing (ReVive – 6.3%) 

– Network traffic (63 bytes per 1000 ins - compressed) 

– Re-execution (depends on false positives & race position) 

• Can be done offline 
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Network Traffic Overhead 

 

63 

 ̴1 cache line 
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Re-execution Overhead 

• Instructions re-executed until the first true data race is 

analyzed are shown as overhead 

• In this process, it may also encounter many false positive 

races 

• Instructions re-executed to analyze only the true race are 

shown as true overhead 

• Instructions re-executed to filter out the false positives are 

shown as false overhead 
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Re-execution Overhead 

22% 

Modest 

overhead 
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False Positives 

• Parallel bloom filters with H3 hash function 
 

1.57% 

Low False 

Positive 
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Virtualization 
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Virtualization 

• RDM uses as many queues as the number of threads 

• Timestamp is accessed by thread id 

• Thread id remains same even after migration 

• Timestamps, flags, conflict signature are saved and 

restored at context switch 

• RDM intersects incoming signatures against all other 

threads‟(even inactive ones) signatures 

• Threads can be re-executed without any scheduling 

constraints 
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Scalability 

• For small # of proc., scalability is not a problem 

• The operation of RDM can be pipelined 

– Simple repetitive operation 

• Network traffic (compressed message) around 

63Bytes/thousand ins 

• Checkpoint is an issue. 


