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Motivation

= Availability & Reliability increasingly important

Frequency T, Feature Size ¥+ = FErrors T

Complexity T, Verification Cost T = Errors T

Multiprocessors = Errors T

Global software-only recovery too slow

Can hardware help?
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Motivation

= Cost vs. Performance vs. Availability

= [Low Cost

— Simple changes to a few key components

* [.ow Performance Overhead

— Handle frequent operations in hardware
= High Availability

— Fast recovery from a wide class of errors

T
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Contribution: New Scheme

" Low Cost
— HW changes only to directory controllers
— Memory overhead only 12.5% (with 7+1 parity)
" Low Performance Overhead
— Only 6% performance overhead on average
= High Availability
— Recovery from: system-wide transients, loss of one node

— Availability better than 99.999% (assuming 1 error/ day)

T
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Overview of ReVive

= Entire main memory protected by distributed parity

— Like RAID-5, but in memory

= Periodically establish a checkpoint
— Main memory 1s the checkpoint state

— Write-back dirty data from caches, save processor context

= Save overwritten data to enable restoring checkpoint

— When program execution modifies memory for 1st time

T
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Distributed N+1 Parity

Node 0 Node 1 Node N

Data

Distributed to
minimize contention

= Allocation Granularity: page

= Update Granularity: cache line

T
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Distributed Parity Update in HW

Home of Line X Home of
parity for Line X

T
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ReVive: Checkpoint Creation Timeline

Checkpoint (<1ms for 2MB L2) Execute (100 ms)

> >

<lbs  _400ps/MB  ~20ps

<5us

Write-Back

Interrupt Save CPU Sync

T
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Logging in HW

Data
RdExcl
Line X
e Note:
Wr Log also updates the parity
Rd Line X Wr Log

Home of Line X

T
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Log Filtering

= Add L bit to directory entry of each line
— Clear all L bits on each checkpoint
— Set when logged

— Do not log if already set

= Not needed for correctness
— Can be only in directory cache

— Can be completely omitted

T
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Classes of Recoverable Errors

Interconnection
Network

dule Can recover from

B[O (Trans + perm) errors in 1 node
[0 Trans errors in N nodes

T
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Permanent Node LLoss: Recovery

Unavailable (~840ms) Degraded
Execute Detection Repair Log Repair Data

PO

P1

P2

~100ms|~490msg| ~20s
Tim

- Rollback
HW

P3

Checkpoint
Bzzzt!
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Evaluation Setup

= Splash-2 benchmarks

= 16 superscalar processors (6-1ssue at 1GHz)

= 16kB L1 cache, 512kB L2 cache

= 2-D torus network, virtual cut-through routing
= 100MHz DDR SDRAM

= Using 7+1 distributed parity

= Checkpoint interval: 10ms and infinite

Prvulovic et al. ReVive: Cost Effective Rollback Recovery 13



Performance Overhead
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Tolerable 6% performance overhead
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Worst-Case Recovery Time
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= Radix: 590ms + 180ms + 50ms = 820ms
= 99.999% availability
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Network Traffic
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Memory Trattic
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Related Work

= Device- or problem-specific schemes
— DIVA, Redundant Multithreading, Slipstream, ECC, etc.

— ReVive can handle errors that escape these schemes,
improving overall availability at low additional cost

= Other system-recovery schemes
— Plank et al. - N+1 parity in software
— Masubuchi et al. - logging with bus-snooper

— SafetyNet
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Related Work: SafetyNet

= Types of recoverable errors

— ReVive: Permanent (loss of a node)+Transient

— SafetyNet: Transient; perm only w/ redundant devices
= HW modifications

— ReVive: Directory controller only

— SafetyNet: Memory, caches, coherence protocol
" Performance Overhead

— 6% with ReVive, negligible with SafetyNet

T
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Conclusions

Recovery from: system-wide transients, loss of 1 node
Availability better than 99.999%

Low performance overhead (6% on average)

HW changes only to directory controllers

Memory overhead 12.5% with 741 parity

— Overhead can be reduced by increasing parity groups
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Rollback Recovery in Multiprocessors

" Checkpoint Consistency

— Global, Local Coordinated or Local Uncoordinated
" Checkpoint Separation

— Full or Partial

— Partial can be with Logging, Renaming or Buffering
= Checkpoint Storage

— Safe External, Safe Internal or for a Specialized Error Class

T
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Checkpoint Consistency

Synchronization is fast enough on
shared-memory machines

— All synchronize to make a single consistent checkpoint

= J.ocal Coordinated

— Synchronize as needed for a set of consistent checkpoints

" J.ocal Uncoordinated
— Do not synchronize

— Set of consistent checkpoints computed when recovering

T
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Checkpoint Storage

= Safe External (e.g. RAID) Not fast enough

— Recovery data on redundancy protected-disk

@f@ Internal)(e.g. DRAM)

— Recovery data in redundancy-protected memory

= Unsafe Internal  Not general enough

— Recovery data not protected by redundancy

— Assumes memory content survives errors

T
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Checkpoint Separation

= Full Too much storage needed

— Checkpoint and working data sets do not intersect

= Partial with Butfering Commit atomicity, overhead

— Buffer non-checkpoint data, flush to commit

= Partial with Renaming Complex HW or coarse grain

— Rename to avoid overwriting checkpoint data

'@ial with Loggin}

— Save overwritten checkpoint data in a log

T
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Log & Parity Update Races

= Error while log update in progress

— Must fully perform log update before starting overwrite

= Error while parity update in progress
— Assume a single node fails
— Can recover either old or new content

— Both result in consistent recovery (see paper)

= Long error detection latency

— Keep sufficient logs to recover far enough into the past

T
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Avwvailability vs Overhead

= If checkpoint interval too short

— Lost work and hardware self-check dominate recovery

— Fault-free execution performance suffers

= If checkpoint interval too long

— Low availability

= Find a good balance

— Checkpoint intervals of 100ms to 1s

T
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Analysis

= (ache size vs. checkpoint interval
— 512kB caches with checkpoints every 10ms
— 5MB caches with checkpoints every 100ms

= Log size vs. checkpoint interval
— Log will grow 1n sub-linear proportion to interval size

— 10ms: <3MB per node, only two apps >128kB per node

= Parity overhead: 12.5% of system memory is parity

T
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