
Architectural Support for Scalable pp
Speculative Parallelization in Shared-

M M ltiMemory Multiprocessors

Marcelo Cintra, José F. Martínez, Josep Torrellas

Department of Computer Science
University of Illinois at Urbana-ChampaignUniversity of Illinois at Urbana-Champaign

Speculative Parallelizationp

Codes with access patterns not analyzable by compilerCodes with access patterns not analyzable by compiler
Speculative parallelization can extract some parallelism
Several designs of speculative CMPsSeveral designs of speculative CMPs
Goal & Contribution: Scalable speculative architecture
using speculative CMPs as building blocksusing speculative CMPs as building blocks
– trivially defaults for single-processor nodes

Avg. speedup of 5.2 for 16 processors
(for dominant, non-analyzable code sections)

Intl. Symp. on Computer Architecture - June
2000

2

(, y)

Outline

Motivation
Background
Speculative CMPp
Scalable Speculation
EvaluationEvaluation
Related Work
ConclusionsConclusions

Intl. Symp. on Computer Architecture - June
2000

3

Speculative Parallelizationp

Assume no dependences and execute threads in parallelp p
Track data accesses
Detect violations
Squash offending threads and restart them

Do I = 1 to N
… = A(L(I))+… Iteration J+2

… = A(5)+…
Iteration J+1
… = A(2)+…

Iteration J
… = A(4)+…

A(K(I)) = …
EndDo A(6) = ...A(2) = ...A(5) = ...

RAW

Intl. Symp. on Computer Architecture - June
2000

4

Outline

Motivation
Background
Speculative CMPp
Scalable Speculation
EvaluationEvaluation
Related Work
ConclusionsConclusions

Intl. Symp. on Computer Architecture - June
2000

5

Speculative CMPp

MDT Memory Disambiguation
T blTable

[Krishnan and Torrellas, ICS 98]

Intl. Symp. on Computer Architecture - June
2000

6

Memory Disambiguation Table (MDT)y g ()

Purpose: detect dependences + locate versionsp p
1 entry per memory line touched
Load and Store bits per word per processorp p p

Word 0
Load LoadStore Store

Word 1

TagValid

0x12341 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

Processor 1 has modified
word 0

Processor 2 has loaded
word 0

Intl. Symp. on Computer Architecture - June
2000

7

Handling Data Dependences: Loads

On a load use S bits to find most up-to-date version

g p

p

Miss in L1
L

11 11

Most up-to-date version

Intl. Symp. on Computer Architecture - June
2000

8

Handling Data Dependences: Stores (I)

Use L and S bits to detect RAW violations and squash

g p ()

q

Miss in L1

Violation: squashS

1

Intl. Symp. on Computer Architecture - June
2000

9

Handling Data Dependences: Stores (II)

Use L and S bits to detect RAW violations and squash

g p ()

q

Miss in L1
S

1

11

No violation: shielding

Intl. Symp. on Computer Architecture - June
2000

10

Summary of Protocoly

Per-word speculative Multiple versionsp
information

p

RAW WAR WAW

N N N N N N

Squash?

I d

same-
word

false same-
word

false same-
word

false

No No
Yes No

No No
No No

No No
No No

In-order
Out-of-order

Intl. Symp. on Computer Architecture - June
2000

11

Speculative CMPp

Storing Versionsg
– L1 maintains versions of speculative threads
– L2 maintains only safe versionsL2 maintains only safe versions
– Commit: write back dirty versions from L1 to L2

Static mapping and in order scheduling of tasksStatic mapping and in-order scheduling of tasks
L1 and MDT overflows cause stalls

Intl. Symp. on Computer Architecture - June
2000

12

Outline

Motivation
Background
Speculative CMPp
Scalable Speculation
EvaluationEvaluation
Related Work
ConclusionsConclusions

Intl. Symp. on Computer Architecture - June
2000

13

Scalable Speculative Multiprocessorp p

Goals:

1 U l l difi d p l ti CMP i1. Use largely unmodified speculative CMP in
a scalable system

i i ll d f l f i l d– trivially defaults for single-processor nodes

2. Provide simple integration into CC-NUMA

Intl. Symp. on Computer Architecture - June
2000

14

Hierarchical Approach: CMP as Nodespp

DIR Directory
NC N k C llNC Network Controller
LMDT Local Memory

Disambiguation Tableg
GMDT Global Memory

Disambiguation Table

Intl. Symp. on Computer Architecture - June
2000

15

Hierarchyy

Node Systemy
Spec L1 L2
Safe L2 Mem

Versions

Processor Node
L1 L2 L2 Mem

Commits

LMDT GMDT
Processors NodesGranularity of info

Spec info

Thread Chunk
Static Dynamic

Mapping of tasks

Intl. Symp. on Computer Architecture - June
2000

16

Hierarchical Approach: Loadspp

3. Provide version
5. Identify on-chip

version

1. Miss in L12. Identify on-chip
version

1. Miss in L1

L:

2. No on-chip
version

6. Provide version
1S:

1S:

L:

3. Miss in L2

4 Id tif ff hi L:

Intl. Symp. on Computer Architecture - June
2000

17

4. Identify off-chip
version 1S:

L:

Hierarchical Approach: Storespp

1 Store1. Store

S:

L: 1

S:

L:

3. Store
1L:

Intl. Symp. on Computer Architecture - June
2000

18

1

S:

L:

Mapping of Taskspp g
Node System

Assignment Threads Processors Chunks Nodes

Mapping Static Dynamic

Reason
Minimize spec CMP Minimize load

Chunk = consecutive set of threads

Reason
modifications imbalance

Chunk consecutive set of threads

Intl. Symp. on Computer Architecture - June
2000

19

Mapping of Tasks Node 1 finishes iterationspp g

Task: 0 1 2 3 4 5 6 7 8 9 10 11

Least-Spec

Update queue

n0n1
n2

Writeback L1
D data to L2 GMDT

Intl. Symp. on Computer Architecture - June
2000

20

Most-Spec

Mapping of Taskspp g

Task: 0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15

Least-Spec

12 13 14 15

n0n1
n2
n1

GMDT

Intl. Symp. on Computer Architecture - June
2000

21

Most-Spec

Node Commits Node 0 finishes iterations

Task: 0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15

Least-Spec

12 13 14 15 Update queue

n0n1
n2
n1Writeback L1

D data to L2 GMDT

Writeback L2

Intl. Symp. on Computer Architecture - June
2000

22

Most-Spec
Writeback L2
D data to memory

Node Commits Node 1 has already finished
h k 1

Task:
16 17 18 19

4 5 6 7 8 9 10 11
12 13 14 15

chunk 1

16 17 18 19

Least-Spec

12 13 14 15 Update queue

n1

n0

n2
n1

GMDT

Writeback L2

Intl. Symp. on Computer Architecture - June
2000

23

Most-Spec
Writeback L2
D data to memory

Node Commits

Task:
16 17 18 19

8 9 10 11
12 13 14 1516 17 18 19

Least-Spec

12 13 14 15

n0

n2
n1

GMDT

Intl. Symp. on Computer Architecture - June
2000

24

Most-Spec

GMDT Features

+Allows displacement of clean speculative data from cachesp p
30% faster because of no stall

+Identify versions to read with a single lookupg p
+Selective invalidations with shielding

50% fewer network messages

+Squash all faulting threads in parallel & restart in parallel
5% faster in a 4 node system- Commit and squash require sync of GMDT (not

processors)

Intl. Symp. on Computer Architecture - June
2000

25

Outline

Motivation
Background
Speculative CMPp
Scalable Speculation
EvaluationEvaluation
Related Work
ConclusionsConclusions

Intl. Symp. on Computer Architecture - June
2000

26

Simulation Environment

Execution-driven simulation
Detailed superscalar processor model
Coherent+speculative memory back-endp y
Scalable multiprocessor: 4 nodes
Node: spec CMP + 1M L2 + 2K-entry GMDTNode: spec CMP + 1M L2 + 2K entry GMDT
CMP: 4 x (processor + 32K L1) + 512-entry LMDT
Processor: 4-issue dynamicProcessor: 4-issue, dynamic

Intl. Symp. on Computer Architecture - June
2000

27

Applicationspp

Applications dominated by non-analyzable loops pp y y p
(subscripted subscripts)
Track, BDNA (PERFECT)
APSI (SPECfp95)
DSMC3D, Euler (HPF2)

Non-analyzable
loops take on avg.
51% of sequential time, ()

Tree (Univ. of Hawaii)
Non-analyzable loops and accesses identified by the

51% of sequential time

y p y
Polaris parallelizing compiler
Results shown for the non-analyzable loops only

Intl. Symp. on Computer Architecture - June
2000

28

y p y

Overall Performance Avg. speedup=4.4g p p

Intl. Symp. on Computer Architecture - June
2000

29

Overall Performance Avg. speedup=4.4g p p

Memory time is most significant
performance bottleneck

Intl. Symp. on Computer Architecture - June
2000

30

Overall Performance Avg. speedup=4.4g p p

L1 overflow is
only noticeable
for BDNA andfor BDNA and
APSI

Intl. Symp. on Computer Architecture - June
2000

31

Overall Performance Avg. speedup=4.4g p p

Squash time is only
noticeable
f DSMC3Dfor DSMC3D

Intl. Symp. on Computer Architecture - June
2000

32

Loop Unrollingp g

Base: 1 iteration per processorp p
Unrolling: 2 and 4 iterations per processor

Increased performance: avg. speedup of 5.2
Reduction in memory time
Increase in L1 overflows

Intl. Symp. on Computer Architecture - June
2000

33

Granularity of Speculative Statey p

Increased number of squashes

Line = 16 words
(64 Bytes)

Intl. Symp. on Computer Architecture - June
2000

34

Related Work (I)()

CMP schemes:
Multiscalar (Wisconsin), TLDS (CMU), Hydra
(Stanford) MDT (Illinois) Superthreaded(Stanford), MDT (Illinois), Superthreaded
(Minnesota), Speculative Multithreading (UPC)

– designed for tightly-coupled systems: not scalable

Intl. Symp. on Computer Architecture - June
2000

35

Related Work (II)()

Scalable schemes:
TLDS (CMU), Zhang et al. (Illinois):
– Speculative state dispersed along with data– Speculative state dispersed along with data
– Flat view of processors

Zhang et al: More sophisticated (handles reduction– Zhang et al: More sophisticated (handles reduction,
load imbalance, large working sets) but complex

Intl. Symp. on Computer Architecture - June
2000

36

Conclusions

Extended speculative parallelization to scalable p p
system
Integrated largely unmodified speculative CMPIntegrated largely unmodified speculative CMP
– trivially defaults for single-processor nodes

P i i l d f 5 2 f 16Promising results: speedup of 5.2 for 16 processors
Need to support per-word speculative state to
avoid excessive squashes

Intl. Symp. on Computer Architecture - June
2000

37

Architectural Support for Scalable pp
Speculative Parallelization in Shared-

M M ltiMemory Multiprocessors

Marcelo Cintra, José F. Martínez, Josep Torrellas

Department of Computer Science
University of Illinois at Urbana-ChampaignUniversity of Illinois at Urbana-Champaign

Cross Iteration Dependences

Same
F l

Same
F l

Same
F l

RAW WAR WAW
Application

Parameter
(Average)

p

Word False Word False Word False

Number 0.1 4,869 0.1 47 0 4,880
Distance 1.0 1.6 1.0 3.1 0 1.6
Number 0 0 95 232 333 312 95 232 333,312

Track

(Average)

Number 0 0 95,232 333,312 95,232 333,312
Distance 0 0 1.0 1.0 1.0 1.0
Number 147,390 9,350,766 102,912 509,315 85,343 8,939,798
Distance 2,640 225 260,051 228,047 2,608 89

APSI

DSMC3D

Number 0 104,066 0 0 0 104,066
Distance 0 415 0 0 0 415
Number 0 0 32,422 48,518 998,500 1,492,510
Distance 0 0 1 0 1 0 1 0 1.0

BDNA

Euler

Distance 0 0 1.0 1.0 1.0 1.0

False: dependence between different words of the same
a cache line

Intl. Symp. on Computer Architecture - June
2000

39

c c e e

GMDT Features

+Allows displacement of clean speculative data from cachesp p
30% faster because of no stall

+Identify versions to read with a single lookupg p
+Selective invalidations with shielding

50% fewer network messages

+Squash all faulting threads in parallel & restart in parallel
5% faster in a 4 node system- Commit and squash require sync of GMDT (not

processors)

Intl. Symp. on Computer Architecture - June
2000

40

Application Behaviorpp

Access Pattern Multiple
Versions

Per-Word
State Appl.Versions State pp

1. R andom,
cl stered Yes Yes

Track,
DSMC3D

i0
i1
i2

clustered DSMC3D

No but
i0
i1

2. Random,
sparse

DSMC3D,
Euler

No, but
may suffer

more squashes

i1
i2

3. Often write
followed
b d

Yes Yes
APSI,

BDNA,
T

i0
i1
i2

W,R

W,R

W,R

Intl. Symp. on Computer Architecture - June
2000

41

by read Tree

Minimizing Squashesg q

Support for
S h?

multiple versions per-word state
Y Y ooo same-word RAW

pp
Squash?

RAW
WAR
WAW

same-wordoooN Y

WAW
same-word RAW

false WAW
Y N ooo

False: dependence between different words of the same
a cache line

false WAW

Intl. Symp. on Computer Architecture - June
2000

42

c c e e

Interaction GMDT-Directoryy

In general: GMDT operates on speculative dataIn general: GMDT operates on speculative data
Dir operates on coherent data

However: Dir sharing vector is kept up-to-date for
speculative data for two reasons:p
– smoothen transition in and out of speculative sections
– further filter our invalidation messages on speculative stores

Intl. Symp. on Computer Architecture - June
2000

43

Multiprogrammingp g g

Replicate window for each jobp j
Add job id to GMDT entries

Intl. Symp. on Computer Architecture - June
2000

44

Simulation Environment

Processor Param. Value Memory Param. Value

Issue width 4 L1 L2 VC size 32KB 1MB 64KBIssue width 4 L1,L2,VC size 32KB,1MB,64KB

Instruction window size 64 L1,L2,VC assoc. 2-way,4-way,8-way
No. functional
units(Int,FP,Ld/St) 3,2,2 L1,L2,VC,line size 64B,64B,64B

No renamingNo. renaming
registers(Int,FP) 32,32 L1,L2,VC,latency 1,12,12 cycles

No. pending
memory ops.(Ld,St) 8,16 L1,L2,VC banks 2,3,2

Local memory latency 75 cyclesLocal memory latency 75 cycles

2-hop memory latency 290 cycles

3-hop memory latency 360 cycles

LMDT,GMDT size 512,2K entries,

LMDT,GMDT assoc. 8-way,8-way

LMDT,GMDT lookup 4,20 cycles
L1-to-LMDT latency 3 cycles

Intl. Symp. on Computer Architecture - June
2000

45

LMDT-to-L2 latency 8 cycles
Max. active window 8 chunks

Application Characteristicspp

Application Loops to % of Sequential Speculative Data (KB)Application Parallelize Time Speculative Data (KB)

Track nfilt_300 41 240
APSI run_[20,30,40,60,100] 21 40

DSMC3D move3_200 33 24767

Euler
dflux_[100,200]

eflux_[100,200,300]
p 20 90 686psmoo_20 90 686

BDNA actfor_240 32 7
Tree accel_10 90 1

Performance data reported refer to the loops only

average: 51

Intl. Symp. on Computer Architecture - June
2000

46

Performance data reported refer to the loops only

Loop Unrolling Avg. speedup=4.7 (Blk 2)
4 6 (Blk 4)p g 4.6 (Blk 4)

Intl. Symp. on Computer Architecture - June
2000

47

Loop Unrolling Avg. speedup=4.7 (Blk 2)
4 6 (Blk 4)p g 4.6 (Blk 4)

Memory time is reduced

Intl. Symp. on Computer Architecture - June
2000

48

Loop Unrolling Avg. speedup=4.7 (Blk 2)
4 6 (Blk 4)p g 4.6 (Blk 4)

Potential increase
in L1 overflows

Intl. Symp. on Computer Architecture - June
2000

49

