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Speculative Parallelization

Codes with access patterns not analyzable by compiler
Speculative parallelization can extract some parallelism
Several designs of speculative CMPs

Scalable speculative architecture
using speculative CMPs as building blocks

— trivially defaults for single-processor nodes

(for dominant, non-analyzable code sections)
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Speculative Parallelization

Assume no dependences and execute threads in parallel
Track data accesses
Detect violations

Squash offending threads and restart them
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Speculative CMP

MDT Memory Disambiguation
Table

[Krishnan and Torrellas, ICS 9§]
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Memory Disambiguation Table (MDT)

Purpose: detect dependences + locate versions
1 entry per memory line touched

Load and Store bits per word per processor

1 0x1234 0 0(1)0 0(1)0 0 0000
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Handling Data Dependences: Loads

On a load use S bits to find most up-to-date version

[
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Handling Data Dependences: Stores (1)

Use L. and S bits to detect RAW violations and squash
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Handling Data Dependences: Stores (11)

Use L. and S bits to detect RAW violations and squash
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Summary of Protocol

Per-word speculative Multiple versions
information
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Speculative CMP

Storing Versions
— L1 maintains versions of speculative threads
— L2 maintains only safe versions

— Commit: write back dirty versions from 1.1 to .2
Static mapping and in-order scheduling of tasks
L1 and MDT overflows cause stalls
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Scalable Speculative Multiprocessor

Goals:

1. Use speculative CMP 1n
a scalable system

— trivially defaults for single-processor nodes

2. Provide simple integration into CC-NUMA
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Hierarchical Approach: CMP as Nodes

r O CE=

DIR Directory

NC Network Controller

LMDT Local Memory
Disambiguation Table

GMDT Global Memory
Disambiguation Table
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Hierarchy

Node
Spec L1
Safe | Y/
Processor
| Y| L2
Spec info LMDT
Granularity of info  Processors
Thread
Static

Versions

Commits

Mapping of tasks
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Hierarchical Approach: Loads

5. Identify on-chip )
version

< s

6. Provide version. 2. No on-chip

version

. J 3. Miss in L2
GMDT ]

4. Identify off-chip L:

version S: |1
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Hierarchical Approach: Stores

S:
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Mapping ot Tasks

Node System

Assignment Threads == Processors Chunks Nodes

Mapping Static Dynamic

Minimize spec CMP Minimize load

Reason . . .
modifications imbalance

Chunk = consecutive set of threads
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Mapping ot Tasks

Task: 0 1 2 3
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Mapping ot Tasks

Task: 0 1 2 3
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Node Commits

Task: 0 1 2 3
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Node Commits

Task:
16 17 18 19
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Node Commits

Task:
16 17 18 19
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GMD'T Features

Allows displacement of clean speculative data from caches

30% faster because of no stall

Identity versions to read with a single lookup

Selective invalidations with shielding

50% tewer network messages

Squash all faulting threads in parallel & restart in parallel

5% faster in a 4 node system

Commit and squash require sync of GMDT
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Simulation Environment

Execution-driven simulation
Detailed superscalar processor model
Coherent+speculative memory back-end

Scalable multiprocessor: 4 nodes
Node: spec CMP + 1M L2 + 2K-entry GMDT
CMP: 4 x (processor + 32K 1) + 512-entry LMDT

Processor: 4-1ssue, dynamic
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Applications

Applications dominated by non-analyzable loops
(subscripted subscripts)

Track, BDNA (PERFECT)
APSI (SPEC{p95) Non-analyzable

loops take on avg.
DSMC3D, Euler (HPF2)

Tree (Untv. of Hawai)

Non-analyzable loops and accesses identified by the
Polaris parallelizing compiler

51% ot sequential time

Results shown for the non-analyzable loops only
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Overall Performance

APSI DSMC3D Euler BDNA
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Overall Performance

Track APSI DSMC3D Euler BDNA ‘Tree

U Memory time is most significant Other

performance bottleneck B Imbalance
Overhead

Memory
Busy
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Overall Performance

Track APSI DSMC3D Euler BDNA

L1 overflow is

only noticeable J
for BDNA and J
APSI I

g
= S0
3

I
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Overall Performance

APSI DSMC3D Euler BDNA Tree

Squash time is only §

noticeable
for DSMC3D

N
F8 §& 5 3
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Loop Unrolling

Base: 1 iteration per processor

Unrolling: 2 and 4 iterations per processor

Increased performance: avg. speedup of 5.2
Reduction in memory time

Increase in 1.1 overflows
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Granularity of Speculative State

Track APSI DSMC3D EKEuler Bdna Tree
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Related Work (I)

CMP schemes:

Multiscalar (Wisconsin), TLDS (CMU), Hydra
(Stanford), MDT (Illinots), Superthreaded
(Minnesota), Speculative Multithreading (UPC)

— designed for tightly-coupled systems: not scalable
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Related Work (1I)

Scalable schemes:
TLDS (CMU), Zhang et al. (Illinots):

— Speculative state dispersed along with data
— Flat view of processors

— Zhang et al: More sophisticated (handles reduction,
load imbalance, large working sets) but complex
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Conclusions

Extended speculative parallelization to scalable
system

Integrated speculative CMP
— trivially defaults for single-processor nodes

Promising results:

Need to support per-word speculative state to
avold excessive squashes
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Cross Iteration Dependences

Application

DSMC3D

False: dependence between different words of the same

Parameter
(Average)
Number
Distance
Number
Distance
Number
Distance
Number
Distance
Number

Distance

1.0

0

0
147,390
2,640

0

0
0
0

cache line

1.6
0
0

9,350,766

225
104,066
415

0

0

Same
Word

0.1
1.0
95,232

1.0
102,912

260,051
0

0
32,422
1.0

47

3.1
333,312
1.0
509.315
228,047
0

0
48,518
1.0
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0
95,232
1.0
85,343
2,608

0

0
998,500
1.0

False

4.880
1.6

333,312
1.0

%.939,798

89
104,066
415

1,492,510

1.0




GMD'T Features

Allows displacement of clean speculative data from caches

30% faster because of no stall

Identity versions to read with a single lookup

Selective invalidations with shielding

50% tewer network messages

Squash all faulting threads in parallel & restart in parallel

5% faster in a 4 node system

Commit and squash require sync of GMDT
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Application Behavior

Multiple Per-Word

Access Pattern )
Versions State

Appl.

1. Random, Track,
clustered DSMC3D

No, but
2. Random,
may suffer
sparse

mﬂm more squashes

i0 W,R
i wr 3 Often write APSI,
Y followed BDNA,

by read Tree

DSMC3D,
Euler
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Minimizing Squashes

Support for
multiple versions per-word state
Y Y

N Y

Y N

Squash?

000 same-word RAW
RAW

ooo same-word WAR
\\Z:\\4

same-word RAW
\\Z:\\4

101010

false

False: dependence between different words of the same

cache line

2000
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Interacttion GMDT-Directory

In general: GMDT operates on speculative data

Dir operates on coherent data

However: Dir sharing vector is kept up-to-date for
speculative data for two reasons:
— smoothen transition in and out of speculative sections

— further filter our invalidation messages on speculative stores
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Multiprogramming

Replicate window for each job

Add job 1d to GMDT entries

Yalid Tag Wocd O

[ROSRIDES 61

+— Non=-Spec
o
%
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Simulation Environment

Processor Param. Memory Param. Value
Issue width L1,L2,VC size 32KB,1MB,64KB

Instruction window size L1,12,VC assoc. 2-way,4-way,8-way

No. functional . .
units(Int, FBLd/St) L1,L2,VCline size 64B,64B,64B

No. renaming

registers(Int, FP) L1,L2,VC,latency 1,12,12 cycles

No. pending
memory ops.(Ld,St)

L1,L2,VC banks 2,3,2
Local memory latency 75 cycles
2-hop memory latency 290 cycles
3-hop memory latency 360 cycles
LMDT,GMDT size 512,2K entries
LMDT,GMDT assoc. 8-way,8-way
LMDT,GMDT lookup 4,20 cycles
L1-to-LMDT latency 3 cycles
LMDT-to-L2 Iatency 8 cycles

Max. active window 8 chunks
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Application Characteristics

Loops to % of Sequential

Parallelize Time Speculative Data (KB)

Application

Track nfilt 300 240
APSI run_[20,30,40,60,100] 40
DSMC3D move3_ 200 24767

dflux_[100,200]
Euler eflux_[100,200,300]
psmoo_20 90

BDNA actfor 240 32
Tree accel_10 90
average: 51

Performance data reported refer to the loops only
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Loop Unrolling

APSI DSMC3D Euler

|
|
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Loop Unrolling

APSI DSMC3D Euler Bdna

|
|
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Loop Unrolling

APSI DSMC3D Euler

Potential increase
in L1 overflows

|
|
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