Dense Dynamic Blocks: Optimizing SpMM for Processors with Vector and Matrix Units Using Machine Learning Techniques

SERIF YESIL*, JOSE MOREIRA+, AND JOSEP TORRELLAS*
*UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
+IBM RESEARCH

IBM-ILLINOIS DISCOVERY ACCELERATOR INSTITUTE
Multiplying Matrices

IBM POWER10 Matrix-Multiply Assist instructions (MMA)
 ◦ Successfully utilized for dense matrix multiply operations in ML domain
 ◦ Functional unit rich processors

Sparse Matrix Dense Matrix Multiply
 ◦ Building block for many complex applications
 ◦ Linear solvers, graph neural networks, recommender systems
 ◦ Many of these applications are iterative
 ◦ SpMM consumes many execution cycles
 ◦ Irregular, unpredictable sparsity structure
 ◦ Hard to utilize matrix-multiply capabilities
Our Approach

Our target: Functional unit rich processors with vector and matrix units

Dense Dynamic Blocks (DDB)
- Utilizes matrix and vector units synergistically to maximize floating-point throughput

A performance prediction tool (SpMM-OPT) capable of selecting
- Functional unit strategy
- Register reuse and cache optimization strategies
In This Talk

- POWER10 Matrix Multiply Facilities (MMA)
- Dense Dynamic Blocks to utilize POWER10 MMA units
- SpMM-Optimizer for selecting SpMM strategy
- Conclusions
POWER10 Matrix Multiply Assist (MMA)

Provides double (single) precision
- 4 × 2 (4 × 4) outer product operations
- Eight 4 × 2 (4 × 4) accumulators

Operation of MMA:
- Execute a sequence of outer product instructions

![Diagram showing the operation of MMA with matrices A and B, and accumulators Acc0 and Acc1. The diagram illustrates the row major and column major operations, and how the results are accumulated.](attachment:image.png)
Blocking the Sparse Matrix for SpMM

Previously blocking the sparse matrix
- $r \times c$ blocks to improve the irregular accesses \rightarrow Hard to obtain
- Introduces zero padding, underutilizes matrix-multiply units

Our proposal for POWER10: Dense Dynamic Blocks (DDB)
- Form dynamic blocks from $r \times 1$ blocks
- Utilizes matrix and vector units synergistically to maximize floating-point throughput
Using 4x4 Blocks

• Creating 4×4 blocks
• 128 FLOPs executed (only 40 FLOPs are necessary)

Example 4x8 Sparse Matrix
Dense Dynamic Blocks (DDB-MM)

- DDB-Matrix Multiply (DDB-MM): Ignore c and create 4×1 blocks
- 80 FLOPs executed (only 40 FLOPs are necessary) \rightarrow 38% reduction

Example Sparse Matrix
Not All Blocks Are Equal

MMA Throughput
- Double precision 32 Flops/cycle

Effective FP Throughput with MMA
- 32 Flops/cycle
- 24 Flops/cycle
- 16 Flops/cycle
- 8 Flops/cycle
Not All Blocks Are Equal

MMA Throughput
- Double precision 32 Flops/cycle

VSX Throughput
- Double precision 16 Flops/cycle

Effective FP Throughput with MMA
- 32 Flops/cycle
- 24 Flops/cycle
- 16 Flops/cycle
- 8 Flops/cycle

Effective FP Throughput with VSX
- 16 Flops/cycle
- 16 Flops/cycle
- 16 Flops/cycle
- 16 Flops/cycle
Dense Dynamic Blocks (DDB-HYB)

- DDB-Hybrid (DDB-HYB): Utilize both matrix and vector units
- 44 FLOPs executed, only 40 FLOPs are necessary

Example Sparse Matrix

Matrix Units

Vector Units
Performance of DDB for SpMM

Tested on IBM POWER10 with 30 SMT4 cores

440 matrices from SuiteSparse

Maximum FLOPs/s

- 1.15 TFLOPs/s for double-precision (DP)
- 2.5 TFLOPs/s for single-precision (SP)

DDB-HYB fastest for 247 of the matrices for DP
DDB-MM fastest for 211 of the matrices for SP
Other SpMM Optimizations

\[C = A \times B \rightarrow A \text{ (sparse)}, \ B \text{ and } C \text{ (dense)} \]

Improving reuse for A or C

- For compressed portion: CSR-A and CSR-C
- For blocked portion: MMA-A and MMA-C

Cache slicing

- Execute \(C = A \times B \) in multiple phases
- 64 columns C and B can be sliced into 16 columns slices
SpMM Optimizations Search Space

1) Choosing vector or matrix units
 ◦ FU St: The functional unit strategy
 ◦ \{CSR, DDB-HYB, DDB-MM\}

2) Improving reuse for A or C
 ◦ Reuse approach for the blocked portion
 ◦ \{MMA-A, MMA-C\}
 ◦ Reuse strategy for the compressed portion
 ◦ \{CSR-A, CSR-C\}

3) Cache slicing
 ◦ The slicing factor
 ◦ \{16, 32, 64, 128, 256\}
SpMM-Optimizer

SpMM-Optimizer: An ML-based approach to select best SpMM strategy

- Functional unit, reuse, slicing strategies for a sparse matrix
- Detecting Sparse Matrices with High and Low Potential for MMA utilization
 - Average floating-point throughput (AFT) metric
- Features to summarize matrix characteristics
 - Size, locality, and blocking characteristics
- Machine learning models
 - Separate models for High and Low Potential matrices with different # cols in dense matrices
 - 10 different models: {High Potential, Low Potential} x {16, 32, 64, 128, 256}
 - Each model uses Support Vector Machines with the linear kernel
Average Floating-Point Throughput (AFT)

Calculate the potential to utilize MMA for a given sparse matrix

What would be the average FLOP throughput for the matrix?

Breakdown matrices into **High Potential** and **Low Potential** groups

- Experimentally selected threshold 20
AFT Example

AFT: Estimate the throughput per nnz

- \(H↓i \): Fraction of nonzeros in a block with \(i \) nonzeros
- \(T↓i \): Effective throughput for \(i \) element block
 - \(T↓4 = 32, T↓3 = 24, T↓2 = 16, T↓1 = 16 \) FLOPS/cycle
 - Blocks with 1 nnz assumed → On Vector Units

\[
AFT = \sum_i \left(T↓i \times H↓i \right)
\]

Example Matrix: \(AFT = 24.8 \) → High Potential
ML System Features

- **Size Characteristics**
 - # rows, # nonzeros: Encode the size characteristics of the matrix

- **Blocking Characteristics**
 - Distribution of nonzeros to 4x1 dense blocks

- **Locality Characteristics**
 - Memory access characteristics of 4x1 blocks created
 - Memory access characteristics for a chunk of the sparse matrix assigned to a thread
Putting it All Together

<table>
<thead>
<tr>
<th>High Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cols</td>
</tr>
<tr>
<td>32 cols</td>
</tr>
<tr>
<td>64 cols</td>
</tr>
<tr>
<td>128 cols</td>
</tr>
<tr>
<td>256 cols</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cols</td>
</tr>
<tr>
<td>32 cols</td>
</tr>
<tr>
<td>64 cols</td>
</tr>
<tr>
<td>128 cols</td>
</tr>
<tr>
<td>256 cols</td>
</tr>
</tbody>
</table>
Putting it All Together

1. Calculate AFT
2. Calculate Matrix Features

<table>
<thead>
<tr>
<th>High Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cols</td>
</tr>
<tr>
<td>32 cols</td>
</tr>
<tr>
<td>64 cols</td>
</tr>
<tr>
<td>128 cols</td>
</tr>
<tr>
<td>256 cols</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cols</td>
</tr>
<tr>
<td>32 cols</td>
</tr>
<tr>
<td>64 cols</td>
</tr>
<tr>
<td>128 cols</td>
</tr>
<tr>
<td>256 cols</td>
</tr>
</tbody>
</table>
Putting it All Together

1. Calculate AFT
2. Calculate Matrix Features
3. High Potential
 - 16 cols
 - 32 cols
 - 64 cols
 - 128 cols
 - 256 cols
4. Low Potential
 - 16 cols
 - 32 cols
 - 64 cols
 - 128 cols
 - 256 cols
Putting it All Together

1. Calculate AFT
2. Calculate Matrix Features
3. High Potential
 - 16 cols
 - 32 cols
 - 64 cols
 - 128 cols
 - 256 cols
4. CSR (Vector)
 - CSR-A
 - CSR-C
5. DDB-HYB (Vector+Matrix)
 - MMA-A, CSR-A
 - MMA-A, CSR-C
 - MMA-C, CSR-A
 - MMA-C, CSR-C
6. DDB-MM (Matrix)
 - MMA-A
 - MMA-C

Slicing parameters: 16, 32, 64
SpMM-OPT for High Potential Matrices

- **Oracle** and **SpMM-OPT** select: *Functional unit, reuse, slicing* strategies for a sparse matrix
- **SpMM-OPT** can achieve 1.55× average speedup
- **oracle** delivers 1.76× average speedup
- **DDB-HYB** and **DDB-MM** generally achieve the highest performance

Distribution of speedup for oracle method and SpMM-OPT
Double-precision SpMM with 64 columns dense matrices

SpMM-Optimizer

Oracle
SpMM-OPT for Low Potential Matrices

- **Oracle** and **SpMM-OPT** select: *Functional unit, reuse, slicing* strategies for a sparse matrix
- **SpMM-OPT** can achieve 1.3× average speedup
- **Oracle** delivers a 1.64× average speedup
- **Slicing** is the key to achieve high speedups for Low Potential matrices

Distribution of speedup for oracle method and SpMM-OPT

Double-precision SpMM with 64 columns dense matrices
More details in the paper

Detailed descriptions of register reuse and cache slicing optimizations
Detailed description of DDB and SpMM-Optimizer
Experiments with 16-256 columns dense matrices
Discussion on effect of slicing
Conclusions

- Optimizing SpMM on processors with vector and matrix units
- Dense Dynamic Blocks
 - A hybrid approach to utilize vector and matrix units for SpMM
 - Observed up to 1.1 TFLOPS/s for DP, 2.5 TFLOPS/s for SP SpMM
- SpMM-Optimizer
 - An ML method to navigate the optimization search space for SpMM
 - An average speedup of up to 2x compared to an optimized CSR baseline
Dense Dynamic Blocks: Optimizing SpMM for Processors with Vector and Matrix Units Using Machine Learning Techniques

SERIF YESIL*, JOSE MOREIRA+, AND JOSEP TORRELLAS*
*UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
+IBM RESEARCH
IBM-ILLINOIS DISCOVERY ACCELERATOR INSTITUTE