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Serverless Computing: Why do we want ite

O Breaking large monolithic applications info many small microservices
O Ease of programming
O Elasticity

O Pay-as-you-go model
O Opportunity for high resource utilization

O Economic incentives

O AWS Lambda, Microsoft Azure, Google Cloud, IBM Cloud
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Serverless Computing: How does it worke
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Real-world Applications

O Functions composed into applications with control and data dependences
O Two ways to compose application from functions

O Explicit workflows

O Implicit workflows
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Real-world Applications
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Contributions

O Characterization of serverless environments

O Propose SpecFaas — novel serverless execution model based on speculation

O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction

O Data dependences are speculatively satisfied with memoization

O Average speedup 4.6X



Ouvutline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaasS Design and Implementation

O SpecFaas Key Results
O Conclusion



Short Functions, Huge Overheads

Platform: OpenWhisk
Applications: TrainTicket

Function Execution
Transfer Function Overhead
Platform Overhead

Runtime Setup

Container Creation 1500 ms




Short Functions, Huge Overheads
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Applications: TrainTicket
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Runtime Setup

Can we minimize and/or
2S overhead_for Container Creation 1500 ms overlap overheads?
20ms execution! Can we even overlap
executions?




Control Dependences are Predictable

O Sequence of functions highly predictable

O Exception and error handling code rarely executed

O Most popular sequence accounts for
O 90% of invocations with Alibaba

O 98% of invocations with TrainTicket

O Branches and conditional function calls create workflow divergence
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Control Dependences are Predictable

O Branches and conditional function calls create workflow divergence

O Sequence of functions highly predictable AWS Stop Funcions wordiow .@
O Exce F
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Data Dependences are Rare

O Functions can communicate via remote storage

O Remote storage is not frequently updated
O Azure Blob storage traces: only 23% writes, 66% of blobs never updated

O Reads and writes to the same location are well separated
O Azure Blob storage traces: 96% more than 1s, 27% more than 10s
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Data Dependences are Rare

O Functions can communicate via remote storage

O Remote storage is not frequently updated

O Azure

O Reads an
O Azure

Can we predict data dependences between
functions without frequent squashing?




Data Dependences are often Predictable

O Most functions don't read from writable storage, don't write to storage
O 76% for TrainTicket, 85% for FaaSChain

O Pure functions: stateless + deterministic

O Guaranteed to produce the same outputs whenever invoked with the same inputs
@Override
public mResponse queryForId(String stationName) {

Station station = repository.findByName(stationName);
if (station != null) {

return new mResponse<>(1, success, station.getId());
} else {

return new mResponse<>(0, "Not exists", stationName);



Data Dependences are often Predictable

O Most functions don't read from writable storage, don't write to storage
O 76% forIrainTicket, 85% for FaaSChain
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Side Effects not Diverse, CPUs Poorly Utilized

O Only few types of side-effects
O Functions meant to be executed anywhere, should not carry/modify any local OS state
O 110 open-source functions: writes to remote storage, writes to local files, HTTP
O CPUs are not fully utilized in the cloud
O Need to handle load spikes and be prepared for the worst-case scenario
O Alibaba Cloud: CPUs always in the range 60-80%
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Ouvutline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaasS Design and Implementation

O SpecFaas Key Results
O Conclusion



SpecFaas Overview:

Executing Beyond Dependences
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SpecFaas Overview:

Squashing on Mis-speculation
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SpecFaas Overview:

Squashing on Mis-speculation
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SpecFaas Design:

High-Level Overview
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SpecFaas Design:

Sequence Table with Branch Predictor
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SpecFaas Design:

Memoization Table and Data Buffer
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SpecFaas Design:

Memoization Table and Data Buffer
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Ouvutline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaas Design and Implementation
O SpecFaas Key Results

O Conclusion



SpecFaas: Key Results
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O Serverless computing brings benefits but its execution is inefficient

O Propose SpecFaas$ — novel serverless execution model based on speculation for
performance

O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction
O Data dependences are speculatively satisfied with memorization

O Data Buffer buffers speculative updates and prevents them from being externalized before
speculative function is committed

O Average speedup 4.6X
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SpecFaas: More in the Paper!

O Efficient support for implicit workflows

O Minimizing cost and frequency of mis-speculation
O Handling different side-effects

o ...



Backup Slides:

FaaSChain Applications
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Backup Slides:

SpecFaas Branch Predictor Sensitivity
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Backup Slides:

SpecFaas Support for Implicit Workflows
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Backup Slides:

SpecFaas Mis-Speculation Handling

O Main challenge with SpecFaas: it becomes expensive on mis-speculation
O There are 3 options

O Option 1: Let the mis-speculated function request (invocation) finish in the background
and ignore all its global updates

O No squashing, uses precious CPU cycles
O Option 2: Squash the function request by killing the container

O No waste of CPU cycles, expensive squash operation (stopping the container ~10s in the
background + cannot reuse container for latter invocations)

O Option 3: Squash the function request by killing the handler process

O No waste of CPU cycles, cheap squash operation (~1ms), can reuse container



Backup Slides:

SpecFaas Side-Effects Handling

O Three main sources of side-effects
O Writing to global storage, writing to local files, sending HTTP requests
O SpecFaaS able to deal with writes to the global storage via Data Buffer
O Writing to local files > CoW for Files (intercept file syscalls)
O For every request (invocation) we start with the initial shared files
O As long as the request only reads from the files, it uses the original files
O Once the request tries to write to the file, it gets its own temp copy of the file
O When the request completes its execution discard all temporary files

O Sending HTTP requests - Stall (intercept sendto syscall)

O Once we detect arequest tries to send data via socket, we stall the operation until the request
becomes non-speculative



Backup Slides:

SpecFaas Producer-Consumer Handling

O Functions can communicate over the storage when data is larger than the allowed input
size defined by the FaaS platform

O FuncA producer writes to the storage, FuncB consumer reads from the storage

@)

If a consumer prematurely reads from the storage - need to squash it (used stale dataq)

Controller can detect that a function is frequently squashed due to RAW dependence
violation = infroduce STALL operation

@)

O Avoid squashing by stalling until data becomes available
O Previous writer/producer wrote to the storage (data buffer)

O Previous writer/producer completed its execution



