
SpecFaaS: 
Accelerating Serverless Applications 
with Speculative Function Execution

HPCA 2023
Jovan Stojkovic, Tianyin Xu, Hubertus Franke*, Josep Torrellas
University of Illinois at Urbana-Champaign
 *IBM Research                                            



Serverless Computing: Why do we want it?

� Breaking large monolithic applications into many small microservices
� Ease of programming

� Elasticity

� Pay-as-you-go model
� Opportunity for high resource utilization

� Economic incentives

� AWS Lambda, Microsoft Azure, Google Cloud, IBM Cloud
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Serverless Computing: How does it work?
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Real-world Applications

� Functions composed into applications with control and data dependences

� Two ways to compose application from functions
� Explicit workflows

� Implicit workflows
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Contributions

� Characterization of serverless environments

� Propose SpecFaaS – novel serverless execution model based on speculation
� Functions execute before their control and data dependences are resolved

� Control dependences are predicted with branch prediction

� Data dependences are speculatively satisfied with memoization

� Average speedup 4.6X



Outline of this talk

� Characterization of Serverless Environments
�

�

�

�



Short Functions, Huge Overheads
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2s overhead for 
20ms execution!

Can we minimize and/or 
overlap overheads? 

Can we even overlap 
executions?



Control Dependences are Predictable

� Branches and conditional function calls create workflow divergence

� Sequence of functions highly predictable
� Exception and error handling code rarely executed

� Most popular sequence accounts for
� 90% of invocations with Alibaba

� 98% of invocations with TrainTicket



Control Dependences are Predictable

� Branches and conditional function calls create workflow divergence

� Sequence of functions highly predictable
� Exception and error handling code rarely executed

� Most popular sequence accounts for
� 90% of invocations with Alibaba

� 98% of invocations with TrainTicketCan we develop a SW branch predictor to pick 
the next function to execute early, speculatively?



Data Dependences are Rare

� Functions can communicate via remote storage

� Remote storage is not frequently updated
� Azure Blob storage traces: only 23% writes, 66% of blobs never updated

� Reads and writes to the same location are well separated
� Azure Blob storage traces: 96% more than 1s, 27% more than 10s
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� Reads and writes to the same location are well separated
� Azure Blob storage traces: 96% more than 1s, 27% more than 10s
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Can we predict data dependences between 
functions without frequent squashing?



Data Dependences are often Predictable

� Most functions don’t read from writable storage, don’t write to storage
� 76% for TrainTicket, 85% for FaaSChain

� Pure functions: stateless + deterministic
� Guaranteed to produce the same outputs whenever invoked with the same inputs



Data Dependences are often Predictable

� Most functions don’t read from writable storage, don’t write to storage
� 76% for TrainTicket, 85% for FaaSChain

� Pure functions: stateless + deterministic
� Guaranteed to produce the same outputs whenever invoked with the same inputs

Can we memoize current input/output mapping 
and later use it for speculative predictions?



Side Effects not Diverse, CPUs Poorly Utilized

� Only few types of side-effects
� Functions meant to be executed anywhere, should not carry/modify any local OS state

� 110 open-source functions: writes to remote storage, writes to local files, HTTP

� CPUs are not fully utilized in the cloud
� Need to handle load spikes and be prepared for the worst-case scenario

� Alibaba Cloud: CPUs always in the range 60-80%
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� Only few types of side-effects
� Functions meant to be executed anywhere, should not carry/modify any local OS state

� 110 open-source functions: writes to remote storage, writes to local files, HTTP

� CPUs are not fully utilized in the cloud
� Need to handle load spikes and be prepared for the worst-case scenario

� Alibaba Cloud: CPUs always in the range 60-80%Can we waste some of the abundant idle CPU 
cycles in the cloud on mis-speculation?



Outline of this talk

�

� SpecFaaS: Speculative Execution Engine of Serverless Applications
� SpecFaaS Design and Implementation

�

�



SpecFaaS Overview: 
Executing Beyond Dependences
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SpecFaaS Overview:
Squashing on Mis-speculation
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SpecFaaS Overview:
Squashing on Mis-speculation
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SpecFaaS Design: 
High-Level Overview

FaaS Workflow
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SpecFaaS Design: 
Sequence Table with Branch Predictor 
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SpecFaaS Design:
Memoization Table and Data Buffer
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SpecFaaS Design:
Memoization Table and Data Buffer
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Outline of this talk

�

� SpecFaaS: Speculative Execution Engine of Serverless Applications
�

� SpecFaaS Key Results

�



SpecFaaS: Key Results

� Average speedup 4.6X
� Tail latency reduced 2.4X
� Throughput increased 3.9X



Conclusion

� Serverless computing brings benefits but its execution is inefficient

� Propose SpecFaaS – novel serverless execution model based on speculation for 
performance
� Functions execute before their control and data dependences are resolved

� Control dependences are predicted with branch prediction

� Data dependences are speculatively satisfied with memorization

� Data Buffer buffers speculative updates and prevents them from being externalized before 
speculative function is committed

� Average speedup 4.6X
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SpecFaaS: More in the Paper!

� Efficient support for implicit workflows

� Minimizing cost and frequency of mis-speculation

� Handling different side-effects
� …



Backup Slides: 
FaaSChain Applications



Backup Slides: 
SpecFaaS Branch Predictor Sensitivity

Average Speedup (FaaSChain):
100% hit rate = 5.2X
90% hit rate = 5X
70% hit rate = 4.6X
50% hit rate = 4X

Improvement due to squash optimization 
90% hit rate = 1.28X
70% hit rate = 1.35X
50% hit rate = 1.43X



Backup Slides: 
SpecFaaS Support for Implicit Workflows



Backup Slides: 
SpecFaaS Mis-Speculation Handling

� Main challenge with SpecFaaS: it becomes expensive on mis-speculation

� There are 3 options

� Option 1: Let the mis-speculated function request (invocation) finish in the background 
and ignore all its global updates
� No squashing, uses precious CPU cycles

� Option 2: Squash the function request by killing the container
� No waste of CPU cycles, expensive squash operation (stopping the container ~10s in the 

background + cannot reuse container for latter invocations)

� Option 3: Squash the function request by killing the handler process
� No waste of CPU cycles, cheap squash operation (~1ms), can reuse container



Backup Slides: 
SpecFaaS Side-Effects Handling

� Three main sources of side-effects
� Writing to global storage, writing to local files, sending HTTP requests

� SpecFaaS able to deal with writes to the global storage via Data Buffer
� Writing to local files à CoW for Files (intercept file syscalls)

� For every request (invocation) we start with the initial shared files
� As long as the request only reads from the files, it uses the original files
� Once the request tries to write to the file, it gets its own temp copy of the file
� When the request completes its execution discard all temporary files

� Sending HTTP requests à Stall (intercept sendto syscall)
� Once we detect a request tries to send data via socket, we stall the operation until the request 

becomes non-speculative



Backup Slides: 
SpecFaaS Producer-Consumer Handling

� Functions can communicate over the storage when data is larger than the allowed input 
size defined by the FaaS platform
� FuncA producer writes to the storage, FuncB consumer reads from the storage

� If a consumer prematurely reads from the storage à need to squash it (used stale data)
� Controller can detect that a function is frequently squashed due to RAW dependence 

violation à introduce STALL operation

� Avoid squashing by stalling until data becomes available
� Previous writer/producer wrote to the storage (data buffer)

� Previous writer/producer completed its execution 


