ILLINOIS

AAAAAA ~-CHAMPAIGN

SpecFaas:
Accelerating Serverless Applications

with Speculative Function Execution

HPCA 2023

Jovan Stojkovic, Tianyin Xu, Hubertus Franke*, Josep Torrellas

University of lllinois at Urbana-Champaign
*IBM Research

Serverless Computing: Why do we want ite

O Breaking large monolithic applications info many small microservices
O Ease of programming
O Elasticity

O Pay-as-you-go model
O Opportunity for high resource utilization

O Economic incentives

O AWS Lambda, Microsoft Azure, Google Cloud, IBM Cloud

Violence

Detector IS
Extract Word

Text Translate Censor

Serverless Computing: How does it worke

Invoker

Balancer

Container 1

Runtime

Container 2

Container 3

Invoker

Container 4

Runtime

Runtime

Runtime

Container 5

Container 6

Runtime

Runtime

Real-world Applications

O Functions composed into applications with control and data dependences
O Two ways to compose application from functions

O Explicit workflows

O Implicit workflows

Real-world Applications

O Functions composed into applications with control and data dependences
O Two ways to compose application from functions

O Explicit workflows

O Implicit workflows

,@)"’,{ ReadTemp Jame, Normalize e, CompareTemp ;nfb TurnAir import composer
— \ def main():
Login i\ e é%\\ return composer.when('Login',

%@’1 Fail Control Dependence Data Dependence 4 Done comp'oser.sequence(
ReadTemp',
'Normalize',
composer.when('CompareTemp',

'TurnAir'),

'Done'),

'Fail')

Real-world Applications

O Functions composed into applications with control and data dependences
O Two ways to compose application from functions

O Explicit workflows

O Implicit workflows

Contributions

O Characterization of serverless environments

O Propose SpecFaas — novel serverless execution model based on speculation

O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction

O Data dependences are speculatively satisfied with memoization

O Average speedup 4.6X

Ouvutline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaasS Design and Implementation

O SpecFaas Key Results
O Conclusion

Short Functions, Huge Overheads

Platform: OpenWhisk
Applications: TrainTicket

Function Execution
Transfer Function Overhead
Platform Overhead

Runtime Setup

Container Creation 1500 ms

Short Functions, Huge Overheads

Platform: OpenWhisk
Applications: TrainTicket

Function Execution
Transfer Function Overhead
Platform Overhead

Runtime Setup

Can we minimize and/or
2S overhead_for Container Creation 1500 ms overlap overheads?
20ms execution! Can we even overlap
executions?

Control Dependences are Predictable

O Sequence of functions highly predictable

O Exception and error handling code rarely executed

O Most popular sequence accounts for
O 90% of invocations with Alibaba

O 98% of invocations with TrainTicket

O Branches and conditional function calls create workflow divergence

EEY AWS Step Functions workflow

Createorder

Amazon DynamoDB

Lambda function

UpdateC Account

ProcessPayment

Start

Y

SetOfdefFalIed

Amazon DynamoDB

Lambda function

L 2
SetOrderCompleted

Amazon DynamoDB +

@

Amazon SNS

]

Lambda function

A 4

RefundCustomer

+‘ Y

NotifyFailure

J

[

Amazon SNS

Control Dependences are Predictable

O Branches and conditional function calls create workflow divergence

O Sequence of functions highly predictable AWS Stop Funcions wordiow .@
O Exce F
O Most
O 9
oq Can we develop a SW branch predictor to pick %

the next function to execute early, speculatively?

B

;‘

v
NotifyFailure

[

e

End

Amazon SNS

OrderFailed

Data Dependences are Rare

O Functions can communicate via remote storage

O Remote storage is not frequently updated
O Azure Blob storage traces: only 23% writes, 66% of blobs never updated

O Reads and writes to the same location are well separated
O Azure Blob storage traces: 96% more than 1s, 27% more than 10s

Write A
Producer

Storage

Read A

Data Dependences are Rare

O Functions can communicate via remote storage

O Remote storage is not frequently updated

O Azure

O Reads an
O Azure

Can we predict data dependences between
functions without frequent squashing?

Data Dependences are often Predictable

O Most functions don't read from writable storage, don't write to storage
O 76% for TrainTicket, 85% for FaaSChain

O Pure functions: stateless + deterministic

O Guaranteed to produce the same outputs whenever invoked with the same inputs
@Override
public mResponse queryForId(String stationName) {

Station station = repository.findByName(stationName);
if (station != null) {

return new mResponse<>(1, success, station.getId());
} else {

return new mResponse<>(0, "Not exists", stationName);

Data Dependences are often Predictable

O Most functions don't read from writable storage, don't write to storage
O 76% forIrainTicket, 85% for FaaSChain

O Pure func
O Guara

eoverride| (Ggn we memoize current input/output mapping

public mRe

statid @nd later use it for speculative predictions?
if (st

} else

o rr—rew—mreoporoo o woT—CrToTT ocoTToTTvoTTeT
14 A 7

}

Side Effects not Diverse, CPUs Poorly Utilized

O Only few types of side-effects
O Functions meant to be executed anywhere, should not carry/modify any local OS state
O 110 open-source functions: writes to remote storage, writes to local files, HTTP
O CPUs are not fully utilized in the cloud
O Need to handle load spikes and be prepared for the worst-case scenario
O Alibaba Cloud: CPUs always in the range 60-80%

10T pgg
0.81 ---- pgo
W 0.61 —*= P70
8 4] — Ppeo
0.4 e PR
0.2

0.0 _e——¢o— i — .
0.0 0.2 0.4 0.6 0.8
CPU Utilization

L 2

Side Effects not Diverse, CPUs Poorly Utilized

O Only few types of side-effects
O Functions meant to be executed anywhere, should not carry/modify any local OS state
O 110 op
O CPUs are
O Need{
o aibar Gan we waste some of the abundant idle CPU

cycles in the cloud on mis-speculation?

Lo — P9
0.8 -—-- psg
w 0.61 —&— P70
8 0.4l —* PeC
0'2 —%— P5(-
0.01 e -ox—o —e :Jl .
0.0 0.2 0.4 0.6 0.8
CPU Utilization

Ouvutline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaasS Design and Implementation

O SpecFaas Key Results
O Conclusion

SpecFaas Overview:

Executing Beyond Dependences

Time

Login | ReadTemp | Normalize | CompareTemp | TurnAir

(a) Conventional Execution

Time . Time .
Login Login
ReadTemp ReadTemp
Normalize Normalize
CompareTemp CompareTemp
TurnAir TurnAir

(b) Control-only Speculative Execution (c) Speculative Execution

SpecFaas Overview:

Squashing on Mis-speculation

Time

>

‘ Login

Fail

(a) Control mis-speculation

SpecFaas Overview:

Squashing on Mis-speculation

Time Time

> >
Login Login
l ReadTemp
Fail Normalize
CompareTemp
TurnAir

(a) Control mis-speculation (b) Data mis-speculation

SpecFaas Design:

High-Level Overview

.I.
FaaS Workflow Confroller

Sequence Table Function Execution Pipeline

fo with Branch Il
@/ Predictor s A S
— L

f P Memoization
1\“/2 Jelolee Scheduler —
Validator/ >
f3 Squasher Data Buffer — Remote
%Y L3 Storage
‘ T 1 v
& Worker Worker Worker Worker | Parallel

1 fi 2 fi 3fi 4 f, | Workers

SpecFaas Design:

Sequence Table with Branch Predictor

- SoqUence Table with Branch Predictor

Path | Prob Path | Prob
] Take 2 Take

FaaS Workflow Controller
Sequence Table 4§/ Function Execution Pipeline

v with Branch

fo +
A " Predictor — A A f
waon — | | | |

Memoization
h L2 | 7 Tobles Scheduler |

\/ Validator/
f3 Squcsher Data Buffer » Remote
I~ ¥ ® Storage
C / \\'\\\\\ |

fa Worker Worker Worker Worker Parallel
1 £ 2 f3 3 fi 4 f, | Workers

SpecFaas Design:

Memoization Table and Data Buffer

Memoization Tables

Input Values QOutput Values

FaaS Workflow Controller
Sequence Table Function Egecution Pipeline
fo » with Branch
f e Predictor F’ £

; P Memoizo’rion;/l l l l
1 2 |/ Tables Scheduler —

\/ Validator/
f3 Squcsher Data Buffer » Remote
I~ ¥ ® Storage
C / W |

fa Worker Worker Worker Worker Parallel
1 £ 2 f3 3 fi 4 f, | Workers

SpecFaas Design:

Memoization Table and Data Buffer

FaaS Workflow

fi f2

-1

A

v

Controller

Sequence Table

with Branch

Function Execution

Data Buffer

Functioni — 1 Function i Functioni + 1
Address
VIRIW Data RIW Data VIRIW Data
Record 1|1, , 1, Valuel o L
Record 2 : ! ! ! :] : 1 : : Value 2

Predictor
Memoization
/' Tables Scheduler |
Validator/
Squasher Data Buffer
1\“_ P 4 < (S
Worker ~ Worker Worker Worker
1 fa 2 fs 3h 4 f,

» Remote
Storage

Parallel

Workers

Ouvutline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaas Design and Implementation
O SpecFaas Key Results

O Conclusion

SpecFaas: Key Results

[Low Load [Medium Load B3 High Load

O Average speedup 4.6X :§ TR B [t = T

O Tail latency reduced 2.4X E;z mm +B B
Eoa {-}- .

O Throughput increased 3.9X 2 00

Login Banking FlightBook HotelBook SmartH OnlPurch AvgFaaSCh AvgTrain AvgAlibaba

[Low Load [Medium Load 3 High Load

7 femm————— e ———————= e
as | = u | HitRate | Baseline | NoSquash | SpecFaaS | Speedup |
=
2°] l 100% 1 1 1 52X
é" 1 90% 1 1.09 1.03 5.0X
5. | 70% 1 1.24 1.08 4.6X
3, | 50% 1 1.43 1.15 4.0X

0 P

O Serverless computing brings benefits but its execution is inefficient

O Propose SpecFaas$ — novel serverless execution model based on speculation for
performance

O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction
O Data dependences are speculatively satisfied with memorization

O Data Buffer buffers speculative updates and prevents them from being externalized before
speculative function is committed

O Average speedup 4.6X

ILLINOIS

AAAAAA ~-CHAMPAIGN

SpecFaas:
Accelerating Serverless Applications

with Speculative Function Execution

HPCA 2023

Jovan Stojkovic, Tianyin Xu, Hubertus Franke*, Josep Torrellas

University of lllinois at Urbana-Champaign
*IBM Research

SpecFaas: More in the Paper!

O Efficient support for implicit workflows

O Minimizing cost and frequency of mis-speculation
O Handling different side-effects

o ...

Backup Slides:

FaaSChain Applications

Login OGN Flight Booking | | Hotel Booking Smart Home Online Purchase
LOGIN
CHECK
_ FAIL CHECK FLIGHT ITEM ID
FAIL ADDRESS T FIND 1
FAIL GET ITEM
RESERVE NEAR N
Banking F“?“T ' G;T
CHOOSE NORMALIZE
OGN CANCEL CHECK oot CLOSE RG
il FLIGHT HOTEL T |
1
CHECK COMPARE
e MONEY RESERVE CHECK el
= HOTEL AVAIL
¥ ¥
Mglc\l)EY WITHDRAW CANCEL CHECK RESERVE TURN AR RESERVE
HOTEL CAR HOTEL ITEM
— Y - CHECK
RECEIPT RECEIPT RESERVE CAR RECEIPT DONE oy pAY b+l RECEIPT

Backup Slides:

SpecFaas Branch Predictor Sensitivity

Average Speedup (FaaSChain): s — %0% = 7o% == 0%
100% hit rate = 5.2X — T
90% hit rate = 5X S) 1]
/0% hit rate = 4.6X R B]
50% hit rate = 4X .1 m
Improvement due to squash optimization 2, :P E..

0% hit rate = 1.28X NEEE=RE

70% hit rate = 1.35X

50% hIT rc:’re =] 43X ° Login Banking FlightBook HotelBook SmartH OnlPurch Average

Backup Slides:

SpecFaas Support for Implicit Workflows

Time
Midle 7 c | | Path1 | ProbTake || Path2 | ProbTake |

w © | Path1 | ProbTake || Path2 | ProbTake |

(a) Execution Workflow

f1Inputs £, Inputs f3 Inputs f; Outputs
Ll T T T T T T T

R
L L L L (b) Sequence Table with Branch Predictor
(c) Memoization table Time
Time Time
Call f Call f3 Call f, Call f3

fi fi
f2 f2
fs [] fs

(d) Conventional Execution of an (e) SpecFaaS Execution of an
Implicit Workflow Implicit Workflow (f) Data Buffer

Backup Slides:

SpecFaas Mis-Speculation Handling

O Main challenge with SpecFaas: it becomes expensive on mis-speculation
O There are 3 options

O Option 1: Let the mis-speculated function request (invocation) finish in the background
and ignore all its global updates

O No squashing, uses precious CPU cycles
O Option 2: Squash the function request by killing the container

O No waste of CPU cycles, expensive squash operation (stopping the container ~10s in the
background + cannot reuse container for latter invocations)

O Option 3: Squash the function request by killing the handler process

O No waste of CPU cycles, cheap squash operation (~1ms), can reuse container

Backup Slides:

SpecFaas Side-Effects Handling

O Three main sources of side-effects
O Writing to global storage, writing to local files, sending HTTP requests
O SpecFaaS able to deal with writes to the global storage via Data Buffer
O Writing to local files > CoW for Files (intercept file syscalls)
O For every request (invocation) we start with the initial shared files
O As long as the request only reads from the files, it uses the original files
O Once the request tries to write to the file, it gets its own temp copy of the file
O When the request completes its execution discard all temporary files

O Sending HTTP requests - Stall (intercept sendto syscall)

O Once we detect arequest tries to send data via socket, we stall the operation until the request
becomes non-speculative

Backup Slides:

SpecFaas Producer-Consumer Handling

O Functions can communicate over the storage when data is larger than the allowed input
size defined by the FaaS platform

O FuncA producer writes to the storage, FuncB consumer reads from the storage

@)

If a consumer prematurely reads from the storage - need to squash it (used stale dataq)

Controller can detect that a function is frequently squashed due to RAW dependence
violation = infroduce STALL operation

@)

O Avoid squashing by stalling until data becomes available
O Previous writer/producer wrote to the storage (data buffer)

O Previous writer/producer completed its execution

