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JavaScript Performance is Lagging

• JavaScript is widely used in Industry
• Websites
• Server-Side Applications
• Desktop Applications

• Performance has greatly improved over the last decade
• 10x improvements since 2008

• Performance still lags behind C/C++
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Attaining High Performance in JavaScript

• Two important performance techniques for fast JavaScript
execution:

• Multi-Tiered Just-in-Time (JIT) Compilation
• Code Specialization

• Our work identifies bottlenecks in current approach
• These two techniques require:

• Many checks
• Metadata (called Stack Map Points) which restrict

compiler optimizations

• Our work’s contribution is to reduce this overhead
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Multi-Tiered JIT Compilation

• Conflicting compiler goals:
• Fast start-up time
• High quality code generation

• Solution: use multiple compilers
• Lower tier compilers (used initially):

• Generate code quickly

• Higher tier compilers (used later):

• Only recompile “hot” code regions (i.e., methods frequently
invoked)
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Multi-Tiered JIT Compilation Process
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Compiler
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Fast Code Generation
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JavaScript Has Complicated Language Semantics

• JavaScript is difficult to optimize due to its many control
paths

• Example: x + y

Typex Typey

Int Int

Double Double

Double Int

Array String

Date Array
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Code Specialization

• Solution: Code specialization – optimize code for the
expected behaviors

• Assume arithmetic operation’s operands will be of a specific
type

• Assume array accesses will be inside existing bounds

• Leverage multi-tiered JIT compilation for accurate
specializations

• Lower tiers observe which behaviors occur
• Higher tiers utilize profiling results to specialize the code

and make it efficient
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Handling Code Specialization

• Code specialization:

+ Greatly improves performance
– Unsafe: no guarantee that assumptions made will be always

true

• Solution: Deoptimization – jump back to “safe” version of
code if assumptions are violated

• “Safe” code covers all possible JavaScript behaviors

• How? Insert Checks and Deoptimization Exit Points to
ensure correct execution

• Deoptimization Exit Points: places where execution can
jump out of code
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Deoptimization Exit Points

[loop_start] 
…

if(violation)
    [Exit Pt]
[specialized code]

…
[loop_end]

[loop_start]
…

Entry:
    [safe operation]

…
[loop_end]

Baseline Code Optimized Code

Deoptimization

Check

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 9



Handling Deoptimization

• Deoptimization requires consistent program state at the
Exit Point and destination

• Register allocator may assign different locations for
variables in each version of generated code

• Stack Map Points (SMPs) contain mapping of variables
to registers and stack at a given point

[loop_start] 
…

if(violation)
    [Exit Pt]
[specialized code]

…
[loop_end]

[loop_start]
…

Entry:
    [safe operation]

…
[loop_end]

Baseline Code Optimized Code

Stack(1)C

B Stack(0)

R1A

LocationVariable

Stack(0)C

B R1

R2A

LocationVariable

Exit SMPEntry SMP
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Recap: Current JavaScript Optimization Techniques

• Two techniques used to improve JavaScript performance
• Multi-Tiered JIT Compilation
• Code Specialization

• These techniques require extra safeguards:
• Checks to verify code specializations are correct
• SMPs needed to perform deoptimizations
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Contribution: NoMap

• Discover the code specialization checks are very frequent in
optimized code

• Discover that Stack Map Points (SMPs) significantly
inhibit the performance of JavaScript

• Hamper compiler optimizations by preventing code
movement

• Associated with checks – every deoptimization exit point
has a SMP

• Propose to use Hardware Transactional Memory (HTM) to
reduce check and SMP overhead

• Improve native performance of JavaScript by 16.7% using
an industrial-strength compiler
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Frequency of Checks

• We instrumented Safari’s optimized compiler to determine
frequency of code specialization checks

• Used Pin to measure the number of checks per 100
instructions
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Overhead of Checks and SMPs

• Checks add instruction overhead
• Must verify assumptions made

• SMPs stiffle conventional compiler optimizations
• Program state must be consistent at Deoptimization Exit

Point and destination
• Hard to reorder code across SMPs

• Would have to then redo/undo operations

• SMPs very frequent – One SMP for each check
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Frequency of Deoptimizations

• Checks & SMPs are needed to safeguard against incorrect
code specializations

• Very rarely are assumptions violated

• However, cannot remove them due to remote chance of
deoptimization

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 15



Insight: Use Hardware Transactional Memory

• Idea: Leverage Hardware Transactional Memory (HTM)

• Surround check & SMP heavy codes with transactions

• Inside TM region one can:
• Remove SMPs ⇒ enhances efficiency of conventional

compiler optimizations
• Compiler leverages HTM to reduce number of checks

• Combine array-bounds checks
• Eliminate overflow checks
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Eliminating SMPs

• Within transactions, replace Deoptimization Exit Points
with aborts:

• SMPs no longer needed

[start_tx]
[loop_start] 

…
if(violation)
    abort
[specialized code]

…
[loop_end]
[end_tx]

NoMap Optimized Code

[loop_start] 
…

if(violation)
    [Exit Pt]
[specialized code]

…
[loop_end]

Original Optimized Code

Becomes
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Check Failure (Deoptimization) Control Flow

Suppose deoptimization is necessary:

[start_tx]
[loop_start] 

…
if(violation)
    abort
[specialized code]

…
[loop_end]
[end_tx]

EntryTM:
[loop_start]

…
Entry:
    [safe operation]

…
[loop_end]

Baseline Code NoMap Optimized Code

1

2
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Combining Array-bounds Checks

• Using HTM, bounds checks can be moved out of loops

[start_tx]
[loop_start] 

…
if(!in_bounds(data, idx))
    abort
sum += data[idx]

…
[loop_end]
[end_tx]

EntryTM:
[loop_start]

…
Entry:
    [safe operation]

…
[loop_end]

Baseline Code NoMap Optimized Code
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Eliminating Overflow Checks

• Using HTM, check for overflow only at transactional
commit

[start_tx]
[loop_start] 

…
sum += a
if(overflow(sum))
    abort

…
[loop_end]
[end_tx]

EntryTM:
[loop_start]

…
Entry:
    [safe operation]

…
[loop_end]

Baseline Code NoMap Optimized Code
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NoMap’s Light Hardware Requirements

• Light TM hardware
• Only buffer speculative writes (not reads)
• Transaction exit need not stall for write buffer drain

• Sticky Overflow Flag
• Reset at transaction start
• Automatically checked at transaction end

• Similar to support in IBM POWER 8/9
• Rollback-Only Transaction (ROT) mode

• Much simplier than traditional HTM
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Native Evaluation Environments

• Lightweight HTM: Emulated NoMap Support
• Add fence on TX Start
• Add short stall on TX End (for clearing Speculative Tags)
• Performance verified against IBM POWER 8 System

• Heavyweight HTM: NoMap targeting Intel’s Restricted
Transactional Memory (RTM)

• Many performance drawbacks

• Monitors both read and write set
• TX write footprint must fit in L1
• Expensive commit
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Evaluation Configurations

• We evaluate NoMap on the SunSpider and Kraken
Benchmark Suites

Architecture Explanation

Base Unmodified compiler. No transactions.

Heavy
Using Heavyweight HTM:
* Does not combine overflow checks.

NoMap Proposed design. Using Lightweight HTM
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Execution Time

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

S01	S03	S04	S05	S06	S07	S10	S11	S12	S13	S14	S15	S16	S18	S19	S20	Avg	

N
or
m
al
iz
ed

	E
xe
cu
0o

n	
Ti
m
e	

Sunspider	Benchmark	Suite	

Base	 Heavy	 NoMap	

• Heavy improves execution time by 6.5%

• NoMap improves execution time by 16.7%
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Conclusions

• Identified the high frequency of checks and SMPs as a
primary JavaScript performance bottleneck

• Proposed using HTM to eliminate this bottleneck
• Convert SMPs to aborts ⇒ compiler optimizations more

effective
• Combined array-bounds checks
• Eliminated overflow checks via the Sticky Overflow Flag

• Improved native JavaScript performance by 16.7% by
applying NoMap to an industrial-strength compiler
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