
NoMap: Speeding-Up JavaScript Using Hardware
Transactional Memory

Thomas Shull, Jiho Choi, Maŕıa J. Garzarán, Josep Torrellas
University of Illinois at Urbana-Champaign

February 19, 2019
HPCA-25 Session 5B

JavaScript Performance is Lagging

• JavaScript is widely used in Industry
• Websites
• Server-Side Applications
• Desktop Applications

• Performance has greatly improved over the last decade
• 10x improvements since 2008

• Performance still lags behind C/C++

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 2

Attaining High Performance in JavaScript

• Two important performance techniques for fast JavaScript
execution:

• Multi-Tiered Just-in-Time (JIT) Compilation
• Code Specialization

• Our work identifies bottlenecks in current approach
• These two techniques require:

• Many checks
• Metadata (called Stack Map Points) which restrict

compiler optimizations

• Our work’s contribution is to reduce this overhead

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 3

Multi-Tiered JIT Compilation

• Conflicting compiler goals:
• Fast start-up time
• High quality code generation

• Solution: use multiple compilers
• Lower tier compilers (used initially):

• Generate code quickly

• Higher tier compilers (used later):

• Only recompile “hot” code regions (i.e., methods frequently
invoked)

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 4

Multi-Tiered JIT Compilation Process

Baseline
Compiler

Optimizing
Compiler

Less Optimized
Fast Code Generation

More Optimized
Slow Code Generation

Hot Method Recompilation

Collect Profiling
Information

Utilize Profiling
Information

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 5

JavaScript Has Complicated Language Semantics

• JavaScript is difficult to optimize due to its many control
paths

• Example: x + y

Typex Typey

Int Int

Double Double

Double Int

Array String

Date Array

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 6

Code Specialization

• Solution: Code specialization – optimize code for the
expected behaviors

• Assume arithmetic operation’s operands will be of a specific
type

• Assume array accesses will be inside existing bounds

• Leverage multi-tiered JIT compilation for accurate
specializations

• Lower tiers observe which behaviors occur
• Higher tiers utilize profiling results to specialize the code

and make it efficient

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 7

Handling Code Specialization

• Code specialization:

+ Greatly improves performance
– Unsafe: no guarantee that assumptions made will be always

true

• Solution: Deoptimization – jump back to “safe” version of
code if assumptions are violated

• “Safe” code covers all possible JavaScript behaviors

• How? Insert Checks and Deoptimization Exit Points to
ensure correct execution

• Deoptimization Exit Points: places where execution can
jump out of code

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 8

Deoptimization Exit Points

[loop_start]
…

if(violation)
 [Exit Pt]
[specialized code]

…
[loop_end]

[loop_start]
…

Entry:
 [safe operation]

…
[loop_end]

Baseline Code Optimized Code

Deoptimization

Check

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 9

Handling Deoptimization

• Deoptimization requires consistent program state at the
Exit Point and destination

• Register allocator may assign different locations for
variables in each version of generated code

• Stack Map Points (SMPs) contain mapping of variables
to registers and stack at a given point

[loop_start]
…

if(violation)
 [Exit Pt]
[specialized code]

…
[loop_end]

[loop_start]
…

Entry:
 [safe operation]

…
[loop_end]

Baseline Code Optimized Code

Stack(1)C

B Stack(0)

R1A

LocationVariable

Stack(0)C

B R1

R2A

LocationVariable

Exit SMPEntry SMP

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 10

Recap: Current JavaScript Optimization Techniques

• Two techniques used to improve JavaScript performance
• Multi-Tiered JIT Compilation
• Code Specialization

• These techniques require extra safeguards:
• Checks to verify code specializations are correct
• SMPs needed to perform deoptimizations

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 11

Contribution: NoMap

• Discover the code specialization checks are very frequent in
optimized code

• Discover that Stack Map Points (SMPs) significantly
inhibit the performance of JavaScript

• Hamper compiler optimizations by preventing code
movement

• Associated with checks – every deoptimization exit point
has a SMP

• Propose to use Hardware Transactional Memory (HTM) to
reduce check and SMP overhead

• Improve native performance of JavaScript by 16.7% using
an industrial-strength compiler

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 12

Frequency of Checks

• We instrumented Safari’s optimized compiler to determine
frequency of code specialization checks

• Used Pin to measure the number of checks per 100
instructions

0	

5	

10	

15	

20	

25	

30	

S01	 S03	S04	 S05	 S06	S07	 S10	 S11	 S12	 S13	S14	 S15	 S16	S18	 S19	 S20	Avg	

N
um

be
r	o

f	C
he

ck
s	p

er
	1
00
	In

st
s	

Sunspider	Benchmark	Suite	

1 check for every 11.3 instructions

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 13

Overhead of Checks and SMPs

• Checks add instruction overhead
• Must verify assumptions made

• SMPs stiffle conventional compiler optimizations
• Program state must be consistent at Deoptimization Exit

Point and destination
• Hard to reorder code across SMPs

• Would have to then redo/undo operations

• SMPs very frequent – One SMP for each check

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 14

Frequency of Deoptimizations

• Checks & SMPs are needed to safeguard against incorrect
code specializations

• Very rarely are assumptions violated

• However, cannot remove them due to remote chance of
deoptimization

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 15

Insight: Use Hardware Transactional Memory

• Idea: Leverage Hardware Transactional Memory (HTM)

• Surround check & SMP heavy codes with transactions

• Inside TM region one can:
• Remove SMPs ⇒ enhances efficiency of conventional

compiler optimizations
• Compiler leverages HTM to reduce number of checks

• Combine array-bounds checks
• Eliminate overflow checks

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 16

Eliminating SMPs

• Within transactions, replace Deoptimization Exit Points
with aborts:

• SMPs no longer needed

[start_tx]
[loop_start]

…
if(violation)
 abort
[specialized code]

…
[loop_end]
[end_tx]

NoMap Optimized Code

[loop_start]
…

if(violation)
 [Exit Pt]
[specialized code]

…
[loop_end]

Original Optimized Code

Becomes

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 17

Check Failure (Deoptimization) Control Flow

Suppose deoptimization is necessary:

[start_tx]
[loop_start]

…
if(violation)
 abort
[specialized code]

…
[loop_end]
[end_tx]

EntryTM:
[loop_start]

…
Entry:
 [safe operation]

…
[loop_end]

Baseline Code NoMap Optimized Code

1

2

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 18

Combining Array-bounds Checks

• Using HTM, bounds checks can be moved out of loops

[start_tx]
[loop_start]

…
if(!in_bounds(data, idx))
 abort
sum += data[idx]

…
[loop_end]
[end_tx]

EntryTM:
[loop_start]

…
Entry:
 [safe operation]

…
[loop_end]

Baseline Code NoMap Optimized Code

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 19

Eliminating Overflow Checks

• Using HTM, check for overflow only at transactional
commit

[start_tx]
[loop_start]

…
sum += a
if(overflow(sum))
 abort

…
[loop_end]
[end_tx]

EntryTM:
[loop_start]

…
Entry:
 [safe operation]

…
[loop_end]

Baseline Code NoMap Optimized Code

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 20

NoMap’s Light Hardware Requirements

• Light TM hardware
• Only buffer speculative writes (not reads)
• Transaction exit need not stall for write buffer drain

• Sticky Overflow Flag
• Reset at transaction start
• Automatically checked at transaction end

• Similar to support in IBM POWER 8/9
• Rollback-Only Transaction (ROT) mode

• Much simplier than traditional HTM

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 21

Native Evaluation Environments

• Lightweight HTM: Emulated NoMap Support
• Add fence on TX Start
• Add short stall on TX End (for clearing Speculative Tags)
• Performance verified against IBM POWER 8 System

• Heavyweight HTM: NoMap targeting Intel’s Restricted
Transactional Memory (RTM)

• Many performance drawbacks

• Monitors both read and write set
• TX write footprint must fit in L1
• Expensive commit

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 22

Evaluation Configurations

• We evaluate NoMap on the SunSpider and Kraken
Benchmark Suites

Architecture Explanation

Base Unmodified compiler. No transactions.

Heavy
Using Heavyweight HTM:
* Does not combine overflow checks.

NoMap Proposed design. Using Lightweight HTM

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 23

Execution Time

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

S01	S03	S04	S05	S06	S07	S10	S11	S12	S13	S14	S15	S16	S18	S19	S20	Avg	

N
or
m
al
iz
ed

	E
xe
cu
0o

n	
Ti
m
e	

Sunspider	Benchmark	Suite	

Base	 Heavy	 NoMap	

• Heavy improves execution time by 6.5%

• NoMap improves execution time by 16.7%

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 24

Conclusions

• Identified the high frequency of checks and SMPs as a
primary JavaScript performance bottleneck

• Proposed using HTM to eliminate this bottleneck
• Convert SMPs to aborts ⇒ compiler optimizations more

effective
• Combined array-bounds checks
• Eliminated overflow checks via the Sticky Overflow Flag

• Improved native JavaScript performance by 16.7% by
applying NoMap to an industrial-strength compiler

Shull et al. NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory 25

NoMap: Speeding-Up JavaScript Using Hardware
Transactional Memory

Thomas Shull, Jiho Choi, Maŕıa J. Garzarán, Josep Torrellas
University of Illinois at Urbana-Champaign

February 19, 2019
HPCA-25 Session 5B

