
SCsafe: Logging Sequential Consistency
Violations Continuously and Precisely

Yuelu Duan, David Koufaty, and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

HPCA
March 2016

1

Intel Labs 1

Josep Torrellas
SCsafe: Logging SC Violations

2

Sequential Consistency (SC)

A0: x =1
A1: y =1

B0: p = y

 B1: t = x

PA PB

•  In SC, memory accesses:
•  Appear atomic
•  Have a total global order
•  For each thread, follow program order

A0
A1
B0

B1

A0
B0
A1

B1

Josep Torrellas
SCsafe: Logging SC Violations

3

Sequential Consistency Violation (SCV)

•  SCV: access reorder that does not conform to SC
•  Machines support relaxed models, not SC
•  Machines may induce SC violations (SCV)

A0: x =1
A1: y =1

B0: p = y

 B1: t = x

initially x=y=0
PA PB

p is 1

A1
B0
B1

A0 t is 0

Very unintuitive bug

In SC, if p=1 then t=1

Josep Torrellas
SCsafe: Logging SC Violations

4

When Can an SCV Occur?

•  Two or more data races overlap
•  They create a cycle

A0: ref(x)

A1: ref(y)

B0: ref(y)

B1: ref(x)

PA PB
A0: x =1
A1: y =1

B0: p =y
B1: t = x

PA PB

Josep Torrellas
SCsafe: Logging SC Violations

5

Why Detecting SCVs is Important?

•  Programmers assume SC
–  SCV is almost always a bug: unexpected interleaving
–  Single-stepping debuggers cannot reproduce the bug

•  Causes portability problems
–  Code may not work across machines

•  Traditional data race detectors won’t work to find SCVs
–  Not specific enough
–  Some codes use races intentionally

Josep Torrellas
SCsafe: Logging SC Violations

6

Contribution: SCsafe

•  First architecture that detects and logs SCVs continuously
–  Records SCV
–  Recovers execution and continues transparently
–  Retains SC

•  Compatible with production runs: does not crash
•  Finds true SCVs; to be fixed later
•  Precise: no false alarms due to false sharing
•  Modest hardware support
•  In codes with few SCVs, negligible performance overhead

Josep Torrellas
SCsafe: Logging SC Violations

7

Current Approaches are Insufficient

•  Detect one SCV and then stop
–  Detect cycle by passing time-stamps

A0: wr (x)

A1: rd(y)

B0: wr(y)
PA PB

B1: rd(x)

Conservative: cycle may
never happen A0: wr (x)

A1: rd(y)

B0: wr(y)
PA PB

•  Only enforce SC
–  Look for a necessary condition for SC: observe a speculative access
–  Squash thread

After detection, program is not
SC àprogram has to
terminate
Hardware is complicated

Josep Torrellas
SCsafe: Logging SC Violations

8

Definition: M-Speculative Access

M-Speculative == “speculative relative to the memory model of the processor”
Its an access that

–  Is reordered AND
–  If it is observed, it will be squashed

A0: rd(x)

A1: rd(y)

B0: wr(y)
PA PB

•  In TSO: rd(y) is M-speculative: it will be squashed
•  In RC: rd(y) is not M-speculative: it will not be squashed

We are interested in accesses that are NOT M-Speculative

Josep Torrellas
SCsafe: Logging SC Violations

9

SCsafe Idea (I)

•  HW keeps track of a processor’s accesses that are reordered
AND not M-speculative
–  Would not be squashed if observed

•  HW nacks any incoming coherence transaction directed to
addresses of these accesses

•  HW stops nacking when access is not reordered anymore

A0: rd(x)

A1: rd(y)

B0: wr(y)
PA PB

nack

Josep Torrellas
SCsafe: Logging SC Violations

10

SCsafe Idea (II)

•  When we have a nack cycle: two or more cores enter deadlock
–  An SCV has been prevented from happening

•  SCsafe detects the deadlock
–  Logs the SCV: addresses + PCs

•  SCsafe forces at least one thread to rollback the reordered
accesses and re-execute them

•  Execution continues at production-run speeds
•  SC is retained à future SCVs are real SCVs

A0: wr (x)

A1: rd(y)

B0: wr(y)
PA PB

B1: rd(x)

Josep Torrellas
SCsafe: Logging SC Violations

11

Why Is SCsafe Simple?

•  Key idea: Never satisfy a request that may end up closing a
dependence cycle; stall it instead
–  No need for timestamps to identify cycles, unlike past schemes
–  Simply look for a deadlock

•  No incorrect data has been supplied
–  Easy to rollback
–  Rollback only one thread, and correct execution can resume

•  Need to ensure that reordered accesses can be undone
–  Reordered stores perform an exclusive prefetch, not a write

Josep Torrellas
SCsafe: Logging SC Violations

12

Architecture Support

Reorder Set

History Buffer

Deadlock
Detector

Core
ROB WB

L1 Cache

Cache controller

Josep Torrellas
SCsafe: Logging SC Violations

13

Architecture Support: Reordered Set (RS)

•  Queue in the cache controller
•  Keeps addresses of reordered, non M-speculative accesses
•  Checked on incoming coherence transactions: nacks if conflict
•  Accesses removed when they are not reordered any more

Reorder Set

History Buffer

Deadlock
Detector

Core
ROB WB

L1 Cache

Cache controller

Josep Torrellas
SCsafe: Logging SC Violations

14

Architecture Support: Deadlock Detector (DD)

•  FSM triggered when:
–  The core nacks an external request, AND
–  The oldest request by the core is nacked by another core

•  Then, the retry messages are augmented with a core bitmap
•  Each core in the deadlock sets a bit in the bitmap. See paper

Reorder Set

History Buffer

Deadlock
Detector

Core
ROB WB

L1 Cache

Cache controller

Josep Torrellas
SCsafe: Logging SC Violations

15

Architecture Support: History Buffer (HB)

•  Contains “undo” state of each reordered retired instruction
•  As a reordering terminates, HB entries freed
•  In a deadlock, cores have executed reordered accesses

–  Memory not polluted (reordered stores only do exclusive prefetch)
•  To recover: use HB to undo the reordered instructions of 1 core

Reorder Set

History Buffer

Deadlock
Detector

Core
ROB WB

L1 Cache

Cache controller

Josep Torrellas
SCsafe: Logging SC Violations

16

Types of Stalls

B0: wr(z)
PC

B1: rd(x)

A0: wr (x)

A1: rd(y)

B0: wr(y)
PA PB

B1: rd(z)

3-way cycles

y z

A0: wr (x)

A1: rd(y)

B0: wr(z)
PA PB

B1: rd(x)

False sharing

Detect, do not record SCV,
recover, and resume

A0: wr (x)

A1: rd(y)

B0: wr(y)
PA PB

Some go away

Josep Torrellas
SCsafe: Logging SC Violations

17

Evaluation

•  Simulations of 16-core multicore. Cores are 3-issue ooo
•  Workloads:

–  12 small programs that implement concurrency algorithms
•  Fences are removed, and hence may have SCVs
•  Goal: measure SCsafe’s ability to find SCVs

–  16 SPLASH-2 and PARSEC
•  No SCVs (although false-sharing induced cycles)
•  Goal: measure the execution overhead
•  Compare overhead to InvisiFence: SC-enforcement only

(squash when reordered access is observed)

Josep Torrellas
SCsafe: Logging SC Violations

18

SCsafe Detects and Records SCVs

•  SCsafe detects many SCVs
•  Most of the stalls do not result in deadlocks

Program
RC TSO

of SCVs # of Stalls # of SCVs # of Stalls
Bakery 3 4494 3 4362
Dekker 14 91412 17 83093
Harris 302 23256 191 24010

… …
…

Average 110 17188 66 16147

Josep Torrellas
SCsafe: Logging SC Violations

SCsafe Execution Overhead over RC No Checks

19

•  SCsafe has very small overhead: 2% average over RC no checks
•  SCsafe as fast as InvisiFence, which only supports SC

enforcement (squash when SCV possible), does not log SCVs

I: InvisiFence (adds Stall, Timeout with squash) S: SCsafe (adds Stall, Recovery)

80

90

100

110

Ex
ec

ut
io

n
Ti

m
e

Br
ea

kd
ow

n
(%

)

Timeout Recovery Stall Useful

I Sbarnes

I Sfmm
I Socean

I Sradio
I Sraytrace

I Swater-ns

I Swater-sp

I Scholesky

I Sfft
I Sradix

I Sblack

I Scann
I Sdedup

I Sfluid
I Sstream

I Sswap

I Savg

Josep Torrellas
SCsafe: Logging SC Violations

Also in the Paper

•  Rigorous definition of the terms used
•  Detailed explanation:

–  Deadlock detection and recovery algorithm
–  Operation of the Reorder Set and History Buffer

•  Livelock considerations
•  Hardware complexity
•  Extensive evaluation

20

Josep Torrellas
SCsafe: Logging SC Violations

Conclusions

21

•  SCsafe: First architecture that detects and logs SCVs continuously
–  Logs SCV
–  Recovers and continues execution
–  Retains SC

•  Compatible with production runs: does not crash
•  Finds true SCVs; to be fixed later
•  Precise: no false alarms due to false sharing
•  Modest hardware support
•  In codes with few SCVs, negligible performance overhead (2%)

SCsafe: Logging Sequential Consistency
Violations Continuously and Precisely

Yuelu Duan, David Koufaty, and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

HPCA
March 2016

1

Intel Labs 1

Josep Torrellas
SCsafe: Logging SC Violations

23

Example of SCV

T1 T2
buf = malloc(...)
init = true

if (init)
... = buf[...]Crash!!

Josep Torrellas
SCsafe: Logging SC Violations

SCsafe Execution Overhead over RC No Checks

24

•  SCsafe has very small overhead: 2% average over RC no checks
•  SCsafe as fast as InvisiFence, which only supports SC

enforcement (squash when SCV possible), does not record SCVs

I: InvisiFence (adds Stall, Timeout with squash)
S: SCsafe (adds Stall, Recovery)

