
Compiler Support for Software Cache
Coherence

Sanket Tavarageri, Wooil Kim, Josep Torrellas, P. Sadayappan

The Ohio State University
University of Illinois at Urbana-Champaign

HiPC’16

1 / 22

Cache Coherence

Cache Coherence is required on Shared Memory
multi-processors that have private caches so that all processors
see values of latest assignments to variables
Cache coherence in hardware (snooping bus, directory-based) is
not scalable/introduces much complexity.

Figure: Need for Cache Coherence on parallel systems Source: Mark Heinrich

2 / 22

Software Cache Coherence

Alternative - Software Cache Coherence (SCC): a compiler
introduces coherence instructions - writebacks, and invalidates in
a parallel program
Benefits of SCC:

Scalable
Selective enforcement of coherence
Simpler hardware

We develop compiler techniques for efficient orchestration of
cache coherence in software

We use the Polyhedral model to precisely identify coherence data
for affine computations

We develop an inspector-executor approach for iterative irregular
computations

3 / 22

Execution Model

Execution of parallel programs on our software managed caches
consists of epochs (intervals between global synchronization
points).

Self-invalidation: In an epoch, a processor invalidates potentially
stale words present in its cache (and which it may need to read)

Writebacks: A processor writes back to shared memory all the
dirty words of its cache (and which may be needed by other
processors): per-word dirty bits keep track of which words are
dirty.

During an epoch, the write ranges of different threads should not
overlap (a program should be data-race free); otherwise we may
lose information by overwriting modified words.

4 / 22

The Coherence API

invalidate_word(void *addr);
invalidate_dword(void *addr);
invalidate_qword(void *addr);

invalidate_range(void *addr, int num_bytes);

writeback_word(void *addr);
writeback_dword(void *addr);
writeback_qword(void *addr);

writeback_range(void *addr, int num_bytes);

5 / 22

Regular code – Polyhedral
algorithms

6 / 22

Example

for (t1 =0; t1 <= ts teps−1; t1 ++) {
#pragma omp p a r a l l e l for pr ivate (t3)

for (t2 =0; t2 <=n−1; t2 ++) {
for (t3 =1; t3 <=n−1; t3 ++) {
S1 : B [t2] [t3] = B [t2] [t3 +1] + 1 ;

}
}

}

Iteration space:

IS1 = {S1[t1, t2, t3] :(0≤ t1 ≤ tsteps−1)

∧ (0≤ t2 ≤ n−1)∧ (1≤ t3 ≤ n−1)}
Array references:

rS1
write ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3)}

rS1
read ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3 +1)}

Flow dependence:

Dflow ={S1[t1, t2, t3] 7→ S1[t1 +1, t2, t3−1] :

(0≤ t1 ≤ tsteps−2)∧ (0≤ t2 ≤ n−1)∧ (2≤ t3 ≤ n−1)}

7 / 22

Computation of Invalidation Set

for (t1 =0; t1 <= ts teps−1; t1 ++) {
#pragma omp p a r a l l e l for pr ivate (t3)

for (t2 =0; t2 <=n−1; t2 ++) {
for (t3 =1; t3 <=n−1; t3 ++) {
S1 : B [t2] [t3] = B [t2] [t3 +1] + 1 ;

}
}

}

Iterations mapped to a processor in an epoch - Icurrent

Iterators of the parallel loop, and its surrounding loops are
parameterized:

IS1
current ={S1[t1, t2, t3] : (t1 = tp)∧ (t2 = tq)∧ (1≤ t3 ≤ n−1)}

Determination of data to be invalidated:

Isource =D−1
flow(IS1

current)\ IS1
current

Dinflow =rS1
write(Isource) = {B[tq, i1] : 2≤ i1 ≤ n}

8 / 22

Computation of Writeback Set

for (t1 =0; t1 <= ts teps−1; t1 ++) {
#pragma omp p a r a l l e l for pr ivate (t3)

for (t2 =0; t2 <=n−1; t2 ++) {
for (t3 =1; t3 <=n−1; t3 ++) {
S1 : B [t2] [t3] = B [t2] [t3 +1] + 1 ;

}
}

}

Determination of data to be written-back:
Itarget = Dflow(IS1

current)\ IS1
current ; Iproducer = D−1

flow(Itarget)∩ IS1
current

Doutflow = rS1
write(Iproducer)

Last writes: writes by iterations which are not sources of any
output dependences
Ilive_out = IS1

current \dom Doutput ;Dlive_out_data = rS1
write(Ilive_out)

Invalidate Set:

DS1
writeback =(Doutflow ∪Dlive_out_data)

={B[tq, i1] : (tp ≤ tsteps−2∧2≤ i1 ≤ n−1)∨
(tp = tsteps−1∧1≤ i1 ≤ n−1)}

9 / 22

Coherence Instructions Inserted Code

for (t1 =0; t1 <= ts teps−1; t1 ++) {
#pragma omp p a r a l l e l for pr ivate (t3)

for (t2 =0; t2 <=n−1; t2 ++) {
invalidate_range (&B[t2] [2] , sizeof (double)∗ (n−1)) ;
for (t3 =1; t3 <=n−1; t3 ++) {
S1 : B [t2] [t3] = B [t2] [t3 +1] + 1 ;

}
i f (t1 == ts teps−1)
writeback_range (&B[t2] [1] , sizeof (double)∗ (n−1)) ;

i f (t1 <= ts teps−2)
writeback_range (&B[t2] [2] , sizeof (double)∗ (n−2)) ;

}
}

Techniques described do not assume any particular mapping of
iterations to processors.

The coherence operations can be minimized with the knowledge
of iteration-to-processor mapping (more details in the paper).

10 / 22

Irregular code

11 / 22

Inspector-Executors

Many classes of programs have time loop and indirect data
accesses.
For such code, we use inspector-executor approach.

while (converged == fa lse) {
#pragma omp p a r a l l e l for
for (i =0; i <n ; i ++) {

read A[B [i]] ; /∗ data−dependent access ∗ /
}

#pragma omp p a r a l l e l for
for (i =0; i <n ; i ++) {

w r i t e A [C[i]] ; /∗ data−dependent access ∗ /
}
/∗ Se t t i ng o f converged v a r i a b l e not shown∗ /

}

The inspection consists of two steps:
1 The writer thread ids are recorded
2 A data reference is marked conflicted if the reader and writer

thread ids are not the same
In the execution phase, the conflicted references are written back
and invalidated.

12 / 22

Other irregular code

We introduce optimizations such as exclusion of read-only data

In conjunction, conservative bulk coherence operations are used
(more details in the paper)

13 / 22

Experimental Evaluation

14 / 22

Experimental Evaluation

Table: Simulator parameters

Processor chip 8-core multicore chip
Issue width; ROB size 4-issue; 176 entries

Private L1 cache 32KB Write-back, 4-way,
2 cycle hit latency

Shared L2 cache 1MB Write-back, 8-way,
multi-banked

11 cycle round-trip time
Cache line size 32 bytes

Cache coherence protocol Snooping-based MESI protocol
Main Memory 300 cycle round-trip time

15 / 22

Experimental Evaluation

Table: Benchmarks

Benchmark Description

gemm Matrix-multiply : C = α.A.B +β.C
gemver Vector Multiplication and Matrix Addition

jacobi-1d 1-D Jacobi stencil computation
jacobi-2d 2-D Jacobi stencil computation

LU LU decomposition
trisolv Triangular solver

CG Conjugate Gradient method
backprop Pattern recognition using unstructured grid
hotspot Thermal simulation using structured grid
kmeans Clustering algorithm used in data-mining

pathfinder Dynamic Programming for grid traversal
srad Image Processing using structured grid

16 / 22

Experimental Evaluation

gemm gemver jacobi1djacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
1
 R

e
a
d
 M

is
s
e
s

L1 Data Cache Read Misses

.13 .26 .11 .09 .08 .13 .18 .12 .03 .01 .02 .06 .10

HCC

HCC−opt

SCC−basic

SCC−opt

Figure: L1 data cache read misses. The L1 read miss ratios for HCC are
also shown.

17 / 22

Experimental Evaluation

gemm gemver jacobi1djacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

#
C

lo
c
k
 C

y
c
le

s
Performance

HCC

HCC−opt
SCC−basic

SCC−opt

Figure: Comparison of Execution times with HCC as the baseline

18 / 22

Experimental Evaluation

gemm gemver jacobi1djacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

#
w

o
rd

s
 o

n
 t
h
e
 b

u
s

Network Traffic

1.1 3.2 4.2 2.1 2.3 1.2 2.6 1.2 1.1 0.2 0.4 1.6 1.4

HCC

HCC−opt
SCC−basic

SCC−opt

Figure: Traffic on the system bus. Average number of words per cycle for
HCC is also shown.

19 / 22

Experimental Evaluation

gemm gemver jacobi1d jacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

E
n
e
rg

y
 (

in
 n

J
)

Cache Energy

HCC
SCC−opt

L1 cache

L2 cache

Figure: Comparison of Energy Consumption with HCC as the baseline

20 / 22

Experimental Results and Conclusion

For all benchmarks, performance of SCC-opt is similar to or
better than that of HCC and is significantly higher than
performance of SCC-basic.

One of the bottlenecks for using SCC was its performance
overhead: because of lack of precise compiler analysis, the
techniques had to be conservative.

The compiler analysis developed removes performance
bottleneck for affine programs.

SCC reduces energy expenditure in caches by 5%.

The main source of energy savings is, elimination of snooping
requests.

Power reduction by simpler hardware: SCC removes any logic
related to snooping and state machine for cache coherence from
the cache controller.

21 / 22

THANK YOU

22 / 22

