Architectures for Extreme-Scale Computing

Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://lacoma.cs.uiuc.edu

"ﬁ&ogﬂﬂ 1 IRBINOIR

Exascale at Affordable Power

o Current petascale machines:
— Footprint of 1/10™ of a US football field
— Consume over 10MW
« IMW == $1M per year
 Need Extreme Scale computing: 1000x more capable for the
same power consumption and physical footprint
— Exascale (10%8) datacenter: 20MW
— Petascale (10%°) departmental server: 20KW
— Terascale (1012) portable device: 20W

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 2

e group

Example

* Intel Polaris Chip (2007)
— 80 very simple cores
— At 5.7GHz, attained 2 TFLOPS (at 256W)

YERAFLOP OF PERFORMANCE

-1t was bare-bones
—->Power has to come down to less than 50W

- Josep Torrellas .
I~acoma Architectures for Extreme Scale Computing ILLINOIS 3

~~~. group



Architectural Challenges in Extreme Scale

 Energy and power efficiency
 Concurrency and locality

* Resiliency

e Programmability

P. Kogge et al: “Exascale Computing Study: Technology Challenges in
Achieving Exascale Systems, DARPA-IPTO, 2008

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 4

e group



Energy and Power Efficiency

 Most formidable challenge

 Three orders of magnitude more energy efficient than current
machines

« 20MW exascale / 20KW petascale / 20W terascale:
— 50 Gops/Watt = 50x10° Ops/Watt
— 20 pJoules/operation
 Reference: Intel CoreDuo mobile microprocessor 2006:
— More than 10K pJ/instruction
 Problem is even harder:
— Large machines spend most of the energy transferring data
— Minimizing transport data, not ALU energy is the challenge

Josep Torrellas

';95993&,' Architectures for Extreme Scale Computing ILLINOIS *



Evolutionary Approaches

e Design circuits for energy and power efficiency rather than speed
— Low-swing on-chip interconnection network circuits

— New memory layouts and bank organizations that minimize the
capacitance switched per access

e Minimize energy charging and discharging lines
At cost of bandwidth?
o Simplify the processor, shallow pipeline, less speculation

e Augment processing nodes with accelerators that are energy-
efficient for some operations

- Not enough. Need new technologies

T Josep Torrellas
LE’SE’Q}L% Architectures for Extreme Scale Computing ,,, ILLINOIS 6



New Technologies Needed

 Near-Threshold Voltage operation

* Non-silicon memory

e 3D die stacking

« Efficient on-chip voltage conversion
* Photonic interconnects

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 7

e group



Near-Threshold Voltage (NTV) Operation

« Most effective approach for energy efficiency:
— Reduce supply voltage V4, to a value slightly higher than V,,
— Corresponds to V44 of about 0.4V rather than current 1V
e Operation under NTV:
— Reduces power consumption of gates by 100x
— Increases their delay by 10x
— Result: total energy savings by one order of magnitude
— Additional drawbacks
* Induces a 5x increase Iin gate delay variation

 Induces several orders of magnitude increase in logic
failures (especially in memories, less variation tolerant)

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS #

e group



How to Deal with the NTV Challenges?

e If processors are slower - more processors
e Optimal V44 for SRAMs is higher than for logic
— Caches can cycle a few times faster than processors
— Redesign cache hierarchy where processors share caches
— Redesign processor to take multiple cycles to access registers
e Aggressive use of techniques that tolerate process variation
— Adaptive body biasing
— Variation-aware job scheduling
— Novel designs of SRAM cells (8T rather than 6T)
 NTV mostly reduces dynamic power
— Leakage power dominates
— Super-aggressive technigues to power-gate chunks of logic

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS °

e group



Non-Silicon Memory

e Several choices of non silicon memory.
 One example is Phase Change Memory (PCM):

— Uses storage element composed of two electrodes
separated by a resistor and phase-change material, such as
Ge,Sh,Te.

— Current through resistor heats the phase change material

— Depending on the T conditions, changes between

e Crystalline (low-resistivity)
 Amorphous (high-resistivity)
— This stores a bit.
— It can also store multiple bits if multiple levels

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 10

e group



Advantages of PCM

« Scalablility with process technology
— Heating contact area and heating current shrink with tech gen

— PCM will enable denser, larger, and very energy-efficient main
memories

— DRAM: Non-scalable technology (needs big capacitors to store
charge and, therefore, big transistors)

* Non-volatile:
— Eliminates the leakage problem

— Potentially support novel uses:
» Fast, low-consumption checkpointing of the program state

* Hybrid DRAM/PCM memories

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS %

e group



Current Disadvantages of PCM

 Longer access latencies than DRAM
« Higher energy per access than DRAM (especially for writes)
o Limited lifetime in the number of writes

— Need to play tricks not to wear-out certain memory areas

Things will likely improve

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 12

e group



3D Die Stacking

 Main goal: reduce memory access power
« 3D stack may contain:
— Only memory dies
— Processor die and memory dies
« Advantages:
— Eliminate energy-expensive data transfers
— Enables high BW connection between memory and proc
 Induce a reorganization of the cache hierarchy?
e Enables high-bandwidth caches near the core
 Problems: hard to manufacture

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 13

e group



Efficient On-Chip Voltage Conversion

* Provide several voltage islands on chip
— Adapt the core(s) to the thread or the environment
— Save a lot of power
e With on-chip voltage conversion:
— Fast changes in voltages (in ns)
— Power-efficient conversion of the voltages

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 14

e group



Photonic Interconnects

Optics have key properties that can be used for interconnects
— Low-loss communication

— Very large message BW enabled by wavelength parallelism
— Low transport latencies (speed of light)

This makes them great for long-range communication

— End-to-end reductions in Energy/bit and time/access

Extreme-scale machines will use them, especially for
communication between far-away nodes in large machines

Active research on photonics for on-chip interconnects

Need to advance the interfaces between electronic and photonic
signaling

= Josep Torrellas -
LE’SE’Q}L% Architectures for Extreme Scale Computing ILLINOIS 15



Architectural Challenges in Extreme Scale

 Energy and power efficiency
 Concurrency and locality

* Resiliency

e Programmability

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 16

e group



Concurrency and Locality

« Performance of extreme-scale machines will not be attained
through higher frequencies

 Need to rely on more threads running concurrently
 Example:

— 1GHz cores finishing one operation per cycle

— Chip: 1,024 cores to attain one Tera-op

— Server: 1M cores for a Peta-op

— Data-center: 1B cores for an Exa-op

* Inreality, a thread will often stall waiting for data - to hide the
stall time, need several times more threads

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 17

e group



Challenge

 Need memory hierarchies, synchronization primitives, network
designs that support these concurrency levels

« At the same time must exploit high degrees of spatial/temporal
locality (to keep energy constraints)

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 18

e group



Supporting Fine-Grain Parallelism

« Efficient, scalable synch and communication primitives
— Efficient point-to-point synch between two cores
e Test-and-set and such
e Producer-consumer with F/E bits
— Low overhead dynamic hierarchical barriers
— Broadcast updates
— Collective operations

* Primitives for the creation, commit, and migration of lightweight
tasks

— Tasks created by compiler
— Spawned with a single instruction
— Managed with scalable queuing hardware

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 1°

e group



Structures that Minimize Data Movement

« Many-core chip organization based on clusters
— A cluster shares some level of the cache hierarchy
— Can be exploited by the compiler

e Simple compute engines in the mem controllers or in the L3 cache
controllers = Processing in Memory (PIM)

— Perform memory-intensive operations
— Seek to avoid transfer of data mem - proc - mem

— Typical operations: Ops on arrays or sets of data, recurrences,
reductions, etc

e Mechanisms to prevent that caches move unnecessary data

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 20

e group



Architectural Challenges in Extreme Scale

 Energy and power efficiency
 Concurrency and locality

* Resiliency

e Programmability

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 2

e group



The Challenge of Resiliency

Many problems are getting worse:

e Spatial variations in process, voltage, and T, as well as wear-out
— Relatively more acute as feature sizes decrease

« Smaller feature sizes imply less charge in storage elements
— Elements more vulnerable to soft errors by particle impact

« Use of V, values close to V,, increases process variation

Increase the chances of permanent or transient error

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 22

e group



Machines Have more Components

e Large machines will have many components, which increases the
chance of faults

« Example: Exa-op supercomputer

— 10-100 Pbytes of memory - tens or hundreds or millions of
memory chips

— Hundreds of exabytes of secondary storage - millions of disk
drives

No single solution can fully address this challenge
Need combination of technigues at different levels

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 2

e group



Techniques for Resiliency

Detection/Isolation Correction/Recovery

) Efficient checkpointing
HW Hardened latches

-Parity/ECC Micro-rollback | |
- Testing circuitry Network reconfiguration

_Detector of aging (ring,etc) Core spares/core disabling/core salvaging

-Watchdog timers Core pairing
-DIVA checkers Thermal management

-HW redundancy

Scheduling threads around errors

OS/runtime Resiliency module to diagnose
and test Core salvaging
Virtualization
Compiler Embed checksums in the basic Compiler support for Intelligent
blocks of the code checkpointing
Appl & Progr|  applications that check Appl does its own checkpointing at key points
System themselves Use transactional model
T Josep Torrellas
5’5993% Architectures for Extreme Scale Computing ,,, ILLI NOIS 24



ReVive: Incremental In-Memory Checkpointing [ISCA02]

* App checkpointing: traditionally high-overhead in high-end computing
 What is costly about checkpointing:
1. Access to disk
2. Moving large chunks of data
 What ReVive proposes.
— In-memory, incremental checkpointing
— Use PCM (non-volatile memory) to avoid disk access
 Result: Scalable checkpointing scheme:
— Very low overhead during error-free operation
— System downtime in an error is kept to a minimum
— Compatible with off-the-shelf processors/caches/mem modules
— Transparent to software (app, compiler, VMM, OS) -> productivity

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 2

e group



Basic In-Memory Incremental Checkpointing

» Periodically establish a global checkpoint by:
— Interrupting all the processors
— Write-back dirty data from caches, save processor context
— Main memory is the checkpointed state of the program

* Between Checkpoints:

— When program execution modifies memory for 1st time, memory
controller saves the previous value in a log

— Leaves a trail of updates that enables restoring to previous
checkpoint

T Josep Torrellas
LE@’Q}L% Architectures for Extreme Scale Computing ,,, ILLINOIS



Checkpoint Creation Timeline

Checkpoint Execute (several ms)
P ~ ———
0)
P
1
P
2
P
fimer | Write-Back
Interrupt  Save CPU Sync

Context

MY Josep Torrellas :
I a%oma Architectures for Extreme Scale Computing ILLINOIS

e group



Between Checkpoints: Logging in HW

* Only needed for the first write back or
displacement of the line since last ckpt

Write back

Mem controller
Rd Line X Wr Log N Wr

Memory

= Josep Torrellas -
I G%md Architectures for Extreme Scale Computing ILLINOIS

e group



Recovery from Permanent Node Loss

Unavailable (~15s) Degraded
Execute Detection Repair Log Repair Data
0
P ~500mg| ~20s
1
P >
2
P — Rollback
3 reset
Checkpoint

Bzzzt!

- Josep Torrellas .
! cigbma Architectures for Extreme Scale Computing ILLINOIS

~~~. group


Summary

 Low cost: HW changes only to memory controllers
 Low performance overhead in error-free operation: < 5%
 Low recovery overhead: ~1 second
* High availabllity:
— Recovers from system-wide transients
— If memory is RAID-ed: recovers from permanent loss of one node

e Transparent to SW

= Josep Torrellas -
I G%ma Architectures for Extreme Scale Computing ILLINOIS

e group

Architectural Challenges in Extreme Scale

 Energy and power efficiency
 Concurrency and locality

* Resiliency

e Programmability

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 3t

e group

Programmability

e Programming highly-concurrent machines has required heroic
efforts

 Extreme-scale architectures, with emphasis on power-efficiency,
may make it worse

— Low Vdd requires more concurrency to attain same perf
— Carefully manage locality and minimize communication

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 32

e group

How to Enhance Programmability

 Programmers need
— EXpress high-degree of parallelism
— Not preclude careful locality management and communication
minimization
« (General approach:
— Program in a high level programming model
 Likely data parallel
— Rely on an intelligent translation layer to map code to HW
« Compiler needs to map tasks and subtasks to localities
e Need autotuning because the architecture is complex

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 33

e group

Architectural Features for Programmability

 Machine provides a single address space to the software

e Hardware mechanisms to support compiler optimizations and
high-level languages

— Mechanisms to detect inter-thread dependences
— Mechanisms to manage cache in software

 Hardware features to detect data transfer patterns and eliminate
or optimize the transfers.

— Primitives for prefetching, multicast-update, move
computation to data

— Efficient synch primitives
Autotuning: performance or energy monitoring hardware:
— Counters, signatures, trace buffers

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 34

e group

Thrifty Extreme Scale Architecture at UIUC

Hierarchical global interconnect

Brocessor cluster

| Mamy—core chip

Funded by DOE-Exascale

- Josep Torrellas .
I~acoma Architectures for Extreme Scale Computing ILLINOIS 3¢

~~~. group



Conclusion

* High performance architectures present major challenges
 Need to advance enabling technologies

— Near V,, operation, optics, 3D-stacking, non-silicon memories,
accelerators

 Need to involve all the layers of the computing stack
— Programming models, compilers, runtime, arch, CAD
e Applications researchers part of the team

= Josep Torrellas -
I~acoma Architectures for Extreme Scale Computing ILLINOIS 3¢

e group



