Fuzzy-Token: An Adaptive MAC Protocol for Wireless-Enabled Manycores

Antonio Franques¹ (franque2@illinois.edu),
Sergi Abadal², Haitham Hassanieh¹, Josep Torrellas¹

¹University of Illinois at Urbana-Champaign
²Universitat Politècnica de Catalunya

CCF-1629431 863337 (WiPLASH)
Current trends are leading to larger manycores.

Wireless on-chip communication holds promise for the implementation of fast networks for these multiprocessors.

In complement of a wired NoC, wireless provides:

- Low latency
- Natural broadcast capabilities
- Flexibility
Wired+Wireless Network-on-Chip

Hybrid Network Interface (HNIF)

Controller

eNIF

wNIF

Router

Transceiver

MAC

PHY

Antenna

CORES + MEMORY
Wired+Wireless Network-on-Chip
As the core density increases, more wireless interfaces can be expected on chip.

Need for arbitration strategies (MAC protocols)
- That provide low access latency
- That scale with number of wireless nodes
- That adapt to different traffic patterns
- That are simple to implement
Medium Access Control (MAC)

- The MAC layer defines mechanisms to ensure that all nodes can access the shared wireless medium in an organized manner.
- Two common access methods: token passing, random access.

<table>
<thead>
<tr>
<th>Token passing</th>
<th>Random access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass a token around a virtual ring. Only the token holder can transmit</td>
<td>Simultaneous accesses to the same channel collide and need to retry</td>
</tr>
</tbody>
</table>

- **Token passing**:
 - Core 1: ✓
 - Core 2: ✓
 - Core 3: ✓

- **Random access**:
 - Core 1: × ✓
 - Core 2: ×
 - Core 3: ✓
The Medium Access Control (MAC) layer defines mechanisms to ensure that all nodes can access the shared wireless medium in a reliable manner.

Two common access methods:

- **Token passing**
 - Pass a token around a virtual ring. Only the token holder can transmit.
 - ✓ No wasted cycles at high loads
 - × Unnecessary delays if contention is low

- **Random access**
 - Simultaneous accesses to the same channel collide and need to retry.
 - ✓ No wasted cycles if contention is low (transmit right away)
 - × Lots of collisions at high loads

4 February 2021

Antonio Franques – University of Illinois at Urbana-Champaign
• Wireless on-chip scenario
 • Physically constrained – need for lightweight MAC protocol
 • Unlike off-chip scenarios, the environment is static and known beforehand
 • All nodes are synchronized
 • Collisions can always be detected
 • Protocols must scale to many cores and adapt to changes in traffic

<table>
<thead>
<tr>
<th></th>
<th>Low load</th>
<th>High load</th>
<th>Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random access</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Token passing</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>??</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Contribution: *Fuzzy-Token*

- We propose *Fuzzy-Token*, a hybrid protocol based on two basic approaches: token passing, and random access.
- We evaluate the performance of *Fuzzy-Token* with a synthetic traffic suite and real application traces.
- We compare the obtained performance with that of a token-passing and a random-access protocol for wireless NoCs, called BRS (*Mestres et al, 2016*).
2 operation modes
 - *Focused* \Rightarrow only the token holder can transmit (collision-free guarantee)
 - *Fuzzy* \Rightarrow all nodes inside *Fuzzy Area* (except token holder) that have pending packets can transmit with probability p_i

Mode can change at each step
 - If in *focused* and token holder doesn’t transmit \Rightarrow switch to *fuzzy*
 - If in *fuzzy* and collision \Rightarrow switch to *focused*
Fuzzy-Token: Main Idea (2/2)

- **Fuzzy Area** size controls amount of contention at each step
 - Increase size (after idle step) when the load is low to give rapid access to the few nodes that want to transmit
 - Quickly decrease size (after collision) when load increases to minimize further collisions
Fuzzy-Token: Example (1/2)

- **Initial state**
 - Fuzzy Mode (all nodes inside *Fuzzy Area* except token holder may transmit)
 - Token holder: node 0, *Fuzzy Area* size: 5

- **Fuzzy Area** size updated using additive increase multiplicative decrease
 - Increase area size by 1 after each idle step
 - Decrease area size by half (round up) after a collision

![Diagram showing node numbering, Fuzzy mode, Fuzzy mode with collision, Focused mode, and Focused mode with OK]
• Initial state
 • Fuzzy Mode (all nodes inside Fuzzy Area except token holder may transmit)
 • Token holder: node 0, Fuzzy Area size: 5

• Fuzzy Area size updated using additive increase multiplicative decrease
 • Increase area size by 1 after each idle step
 • Decrease area size by half (round up) after a collision
• Initial state
 • Fuzzy Mode (all nodes inside Fuzzy Area except token holder may transmit)
 • Token holder: node 0, Fuzzy Area size: 5

• Fuzzy Area size updated using additive increase multiplicative decrease
 • Increase area size by 1 after each idle step
 • Decrease area size by half (round up) after a collision
• Synthetic traffic latency
 ✓ As good as BRS at low loads (fully open Fuzzy Area, transmit immediately)
 ✓ Almost as good as Token at high loads (very small Fuzzy Area, mostly Token Holder is the only one that can transmit)
 ✓ Dynamic and fast adaptation from one behavior to another as load changes
• Real applications
 • We obtain latency statistics from Multi2Sim on a 64-core chip
 • Benchmarks from PARSEC and CRONO suites
✓ Fuzzy-Token provides latency among the lowest of 3 protocols
✓ 4.4x lower latency than BRS, and 2.6x lower than Token
Fuzzy-Token: Also in the Paper...

- Design decisions
- Related work
- Further analysis on...
 - Tail latency
 - Hotspot traffic
 - Bursty traffic
 - Throughput
 - Energy consumption
Fuzzy-Token: Conclusions

• Hybrid approach combines pros of both token-passing and random-access protocols
 ✓ Low latency at low loads (random-access mode)
 ✓ Low latency and collision-free at high loads (token-passing mode)

• Run both random-access and token-passing methods simultaneously
 ✓ Token is always passed to ensure fairness among nodes
 ✓ Protocol reacts immediately after traffic changes (mode change + Fuzzy Area update)

• All transceivers see same consistent view of wireless channel
 ✓ All nodes are synchronized and proceed in lockstep (no need for explicit messages)

• Evaluation with a synthetic traffic model and real application traces shows Fuzzy-Token achieves lowest latency than baseline protocols in many different scenarios
 ✓ Low/High loads
 ✓ Hotspot/Bursty traffic

Thank you!