
The Bulk Multicore Architecture
for Programmability

Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

2Josep Torrellas
The BULK Multicore Architecture

Acknowledgments

Key contributors:
• Luis Ceze
• Calin Cascaval
• James Tuck
• Pablo Montesinos
• Wonsun Ahn
• Milos Prvulovic
• Pin Zhou
• YY Zhou
• Jose Martinez

3Josep Torrellas
The BULK Multicore Architecture

Arch Challenge: Enable a Programmable Environment

• Able to attain high efficiency while relieving the programmer
from low-level tasks

• Help minimize chance of (parallel) programming errors

4Josep Torrellas
The BULK Multicore Architecture

The Bulk Multicore

• Novel scalable cache-coherent shared-memory (signatures & chunks)
– Relieves programmer/runtime from managing shared data

• High-performance sequential memory consistency
– Provides a more SW-friendly environment

• HW primitives for a low-overhead program dev & debug environment
(data-race detection, deterministic replay, address disambiguation)
– Helps reduce the chance of parallel programming errors
– Overhead low enough to be “on” during production runs

http://iacoma.cs.uiuc.edu/bulkmulticore.pdf

General-purpose multicore for programmability

[CommACM 09]

5Josep Torrellas
The BULK Multicore Architecture

The Bulk Multicore

• Idea: Eliminate the commit of individual instructions at a time
• Mechanism:

– By default, processors commit chunks of instructions at a
time (e.g. 2,000 dynamic instr)

– Chunks execute atomically and in isolation (using buffering
and undo)

– Memory effects of chunks summarized in HW signatures
– Chunks invisible to SW

• Advantages over current:
– Higher programmability
– Higher performance
– Simpler processor hardware

The Bulk
Multicore

6Josep Torrellas
The BULK Multicore Architecture

Rest of the Talk

• The Bulk Multicore
• How it improves programmability

7Josep Torrellas
The BULK Multicore Architecture

Hardware Mechanism: Signatures

• Hardware accumulates the addresses read/written in signatures

• Read and Write signatures
• Summarize the footprint of a Chunk of code

[ISCA06]

8Josep Torrellas
The BULK Multicore Architecture

Signature Operations In Hardware

Inexpensive
Operations on

Groups of
Addresses

9Josep Torrellas
The BULK Multicore Architecture

Executing Chunks Atomically & In Isolation: Simple!

commit W0

W0 = sig(B,C)
R0 = sig(X,Y)

W1 = sig(T)
R1 = sig(B,C)

(W0 ∩ R1)∨ (W0 ∩ W1)

ld X
st B
st C
ld Y

Chunk

Thread 0 Thread 1

ld B
st T
ld C

10Josep Torrellas
The BULK Multicore Architecture

Chunk Operation + Signatures: Bulk

st D

st A

P1

ld C
st C ld D

st X

st A

P2

st C

• Execute each chunk atomically and in isolation
• (Distributed) arbiter ensures a total order of chunk commits

[ISCA07]

• Supports Sequential Consistency [Lamport79]:
– Low hardware complexity:
– High performance:

P1 P2 P3 PN...

Mem

Logical
picture

st A
st C

ld D
st X

st A
ld C

st D
st C

Need not snoop ld buffer for consistency
Instructions are fully reordered by HW
loads and stores make it in any order to the sig
Fences are NOOPS

11Josep Torrellas
The BULK Multicore Architecture

Summary: Benefits of Bulk Multicore

• Gains in HW simplicity, performance, and programmability

• Hardware simplicity:
– Memory consistency support moved away from core
– Toward commodity cores
– Easy to plug-in accelerators

• High performance:
– HW reorders accesses heavily (intra- and inter-chunk)

12Josep Torrellas
The BULK Multicore Architecture

Benefits of Bulk Multicore (II)

• High programmability:
– Invisible to the programming model/language
– Supports Sequential Consistency (SC)

* Software correctness tools assume SC
– Enables novel always-on debugging techniques

* Only keep per-chunk state, not per-load/store state
* Deterministic replay of parallel programs with no log
* Data race detection at production-run speed

13Josep Torrellas
The BULK Multicore Architecture

Benefits of Bulk Multicore (III)

• Extension: Signatures visible to SW through ISA
– Enables pervasive monitoring
– Enables novel compiler opts

Many novel programming/compiler/tool opportunities

14Josep Torrellas
The BULK Multicore Architecture

Rest of the Talk

• The Bulk Multicore
• How it improves programmability

15Josep Torrellas
The BULK Multicore Architecture

Supports Sequential Consistency (SC)

• Correctness tools assume SC:
– Verification tools that prove software correctness

• Under SC, semantics for data races are clear:
– Easy specifications for safe languages

• Much easier to debug parallel codes (and design debuggers)
• Works with “hand-crafted” synchronization

16Josep Torrellas
The BULK Multicore Architecture

Deterministic Replay of MP Execution

• During Execution: HW records into a log the order of
dependences between threads

• The log has captured the “interleaving” of threads
• During Replay: Re-run the program

– Enforcing the dependence orders in the log

17Josep Torrellas
The BULK Multicore Architecture

Conventional Schemes

P1

Wa

Wb

P2

Ra

Wb

n2 m1

m2

n1 P2’s Log

P1 n1 m1

P1 n2 m2

• Potentially large logs

18Josep Torrellas
The BULK Multicore Architecture

Bulk: Log Necessary is Minuscule [ISCA08]

P1
Wa
Wb

P2

Rc

Rb
Wc

chunk
1

chunk
2

Wa

Combined Log = NIL

If we fix the chunk commit interleaving:

Combined Log
of all Procs:

P1
P2
Pi

• During Execution:
– Commit the instructions in chunks, not individually

19Josep Torrellas
The BULK Multicore Architecture

Data Race Detection at Production-Run Speed

Unlock L

Unlock L

Lock L
Lock L • If we detect communication between…

– Ordered chunks: not a data race
– Unordered chunks: data race

[ISCA03]

20Josep Torrellas
The BULK Multicore Architecture

Different Synchronization Ops

Unlock L

Unlock L

Lock L
Lock L

Lock

Set F

Wait F

Flag

Barrier

Barrier

Barrier

21Josep Torrellas
The BULK Multicore Architecture

Benefits of Bulk Multicore (III)

• Extension: Signatures visible to SW through ISA
– Enables pervasive monitoring [ISCA04]

Support numerous watchpoints for free
– Enables novel compiler opts [ASPLOS08]

Function memoization
Loop-invariant code motion

22Josep Torrellas
The BULK Multicore Architecture

Pervasive Monitoring:
Attaching a Monitor Function to Address

instr

instr
instr

*p = ...
instr

instr
instr

instr

Watch(addr, usr_monitor)

usr_monitor(Addr){
…..

}

• Watch memory location
• Trigger monitoring function when it is accessed

Rest of Monitoring
FunctionProgram

Main

Thread

Program

*p=

23Josep Torrellas
The BULK Multicore Architecture

Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig

24Josep Torrellas
The BULK Multicore Architecture

Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig

25Josep Torrellas
The BULK Multicore Architecture

Instruction: Begin/End Disambiguation Against Sig

26Josep Torrellas
The BULK Multicore Architecture

Instruction: Begin/End Disambiguation Against Sig

27Josep Torrellas
The BULK Multicore Architecture

Instruction: Begin/End Remote Disambiguation

28Josep Torrellas
The BULK Multicore Architecture

Instruction: Begin/End Remote Disambiguation

29Josep Torrellas
The BULK Multicore Architecture

Optimization: Function Memoization

• Goal: skip the execution of functions

30Josep Torrellas
The BULK Multicore Architecture

• Goal: skip the execution of functions whose outputs are known

Example Opt: Function Memoization

31Josep Torrellas
The BULK Multicore Architecture

Example Opt: Loop-Invariant Code Motion

32Josep Torrellas
The BULK Multicore Architecture

Example Opt: Loop-Invariant Code Motion

33Josep Torrellas
The BULK Multicore Architecture

Summary:
The Bulk Multicore for Year 2015-2018

• 128+ cores/chip, coherent shared-memory (perhaps in groups)

• Simple HW with commodity cores
– Memory consistency checks moved away from the core

• High performance shared-memory programming model
– Execution in programmer-transparent chunks
– Signatures for disambiguation, cache coherence, and compiler opts

• High programmability:
– Sequential consistency
– Sophisticated always-on development support

• Deterministic replay of parallel programs with no log (DeLorean)
• Data race detection for production runs (ReEnact)
• Pervasive program monitoring (iWatcher)

The Bulk Multicore Architecture
for Programmability

Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

