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Arch Challenge: Enable a Programmable Environment

• Able to attain high efficiency while relieving the programmer 
from low-level tasks

• Help minimize chance of (parallel) programming errors
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The Bulk Multicore

• Novel scalable cache-coherent shared-memory (signatures & chunks)
– Relieves programmer/runtime from managing shared data

• High-performance sequential memory consistency
– Provides a more SW-friendly environment

• HW primitives for a low-overhead program dev & debug environment
(data-race detection, deterministic replay, address disambiguation)
– Helps reduce the chance of parallel programming errors
– Overhead low enough to be “on” during production runs

http://iacoma.cs.uiuc.edu/bulkmulticore.pdf

General-purpose multicore for programmability

[CommACM 09]
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The Bulk Multicore

• Idea: Eliminate the commit of individual instructions at a time
• Mechanism: 

– By default, processors commit chunks of instructions at a 
time (e.g. 2,000 dynamic instr)

– Chunks execute atomically and in isolation (using buffering 
and undo)

– Memory effects of chunks summarized in HW signatures
– Chunks invisible to SW

• Advantages over current:
– Higher programmability
– Higher performance
– Simpler processor hardware

The Bulk 
Multicore



6Josep Torrellas
The BULK Multicore Architecture

Rest of the Talk

• The Bulk Multicore
• How it improves programmability
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Hardware Mechanism: Signatures

• Hardware accumulates the addresses read/written in signatures

• Read and Write signatures
• Summarize the footprint of a Chunk of code

[ISCA06]
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Signature Operations In Hardware

Inexpensive
Operations on 

Groups of 
Addresses
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Executing Chunks Atomically & In Isolation: Simple!

commit W0

W0 = sig(B,C)
R0 = sig(X,Y)

W1 = sig(T)
R1 = sig(B,C)

(W0 ∩ R1 )∨ (W0 ∩ W1)

ld X
st B
st C
ld Y

Chunk

Thread 0 Thread 1

ld B
st T
ld C
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Chunk Operation + Signatures: Bulk

st D

st A

P1

ld C
st C ld D

st X

st A

P2

st C

• Execute each chunk atomically and in isolation
• (Distributed) arbiter ensures a total order of chunk commits

[ISCA07]

• Supports Sequential Consistency [Lamport79]:
– Low hardware complexity:
– High performance:

P1 P2 P3 PN...

Mem

Logical 
picture

st A
st C

ld D
st X

st A
ld C

st D
st C

Need not snoop ld buffer for consistency
Instructions are fully reordered by HW
loads and stores make it in any order to the sig
Fences are NOOPS
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Summary: Benefits of Bulk Multicore

• Gains in HW simplicity, performance, and programmability 

• Hardware simplicity:
– Memory consistency support moved away from core
– Toward commodity cores
– Easy to plug-in accelerators

• High performance:
– HW reorders accesses heavily (intra- and inter-chunk)
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Benefits of Bulk Multicore (II)

• High programmability:
– Invisible to the programming model/language
– Supports Sequential Consistency (SC)

* Software correctness tools assume SC
– Enables novel always-on debugging techniques

* Only keep per-chunk state, not per-load/store state
* Deterministic replay of parallel programs with no log
* Data race detection at production-run speed
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Benefits of Bulk Multicore (III) 

• Extension: Signatures visible to SW through ISA
– Enables pervasive monitoring
– Enables novel compiler opts

Many novel programming/compiler/tool opportunities
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Rest of the Talk

• The Bulk Multicore
• How it improves programmability
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Supports Sequential Consistency (SC)

• Correctness tools assume SC: 
– Verification tools that prove software correctness

• Under SC, semantics for data races are clear: 
– Easy specifications for safe languages

• Much easier to debug parallel codes (and design debuggers)
• Works with “hand-crafted” synchronization
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Deterministic Replay of  MP Execution

• During Execution: HW records into a log the order of 
dependences between threads

• The log has captured the “interleaving” of threads
• During Replay: Re-run the program

– Enforcing the dependence orders in the log
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Conventional Schemes

P1

Wa

Wb

P2

Ra

Wb

n2 m1

m2

n1 P2’s  Log

P1   n1   m1

P1   n2   m2

• Potentially large logs 
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Bulk: Log Necessary is Minuscule [ISCA08]

P1
Wa
Wb

P2

Rc

Rb
Wc

chunk
1

chunk
2

Wa

Combined Log = NIL

If we fix the chunk commit interleaving:

Combined  Log 
of all Procs:

P1
P2
Pi

• During Execution:
– Commit the instructions in chunks, not individually
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Data Race Detection at Production-Run Speed

Unlock L

Unlock L

Lock L
Lock L • If we detect communication between…

– Ordered chunks: not a data race
– Unordered chunks: data race 

[ISCA03]
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Different Synchronization Ops

Unlock L

Unlock L

Lock L
Lock L

Lock

Set F

Wait F

Flag

Barrier

Barrier

Barrier
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Benefits of Bulk Multicore (III) 

• Extension: Signatures visible to SW through ISA
– Enables pervasive monitoring [ISCA04]

Support numerous watchpoints for free 
– Enables novel compiler opts [ASPLOS08]

Function memoization
Loop-invariant code motion



22Josep Torrellas
The BULK Multicore Architecture

Pervasive Monitoring:
Attaching a Monitor Function to Address

instr

instr
instr

*p =  ... 
instr

instr
instr

instr

Watch(addr, usr_monitor)

usr_monitor(Addr){
…..

}

• Watch memory location
• Trigger monitoring function when it is accessed

Rest of Monitoring
FunctionProgram

Main

Thread

Program

*p=
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Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig
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Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig
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Instruction: Begin/End Disambiguation Against Sig
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Instruction: Begin/End Disambiguation Against Sig
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Instruction: Begin/End Remote Disambiguation
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Instruction: Begin/End Remote Disambiguation
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Optimization: Function Memoization

• Goal: skip the execution of functions
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• Goal: skip the execution of functions whose outputs are known

Example Opt: Function Memoization
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Example Opt: Loop-Invariant Code Motion
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Example Opt: Loop-Invariant Code Motion
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Summary:
The Bulk Multicore for Year 2015-2018

• 128+ cores/chip, coherent shared-memory (perhaps in groups)

• Simple HW with commodity cores
– Memory consistency checks moved away from the core

• High performance shared-memory programming model
– Execution in programmer-transparent chunks 
– Signatures for disambiguation, cache coherence, and compiler opts 

• High programmability: 
– Sequential consistency
– Sophisticated always-on development support

• Deterministic replay of parallel programs with no log (DeLorean)
• Data race detection for production runs (ReEnact)
• Pervasive program monitoring (iWatcher)
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