Untangle: A Principled Framework to Design Low-Leakage, High-Performance Dynamic Partitioning Schemes

Zirui Neil Zhao*, Adam Morrison, Christopher W. Fletcher, Josep Torrellas

University of Illinois Tel Aviv University

ASPLOS'23 – Session 9C: Hardware Security

Ad *Will be on the job market this fall, seeking a faculty position

Microarchitectural Side-Channel Attacks

*Characters are based on https://xkcd.com/2176 and https://xkcd.com/1808/

Microarchitectural Side-Channel Attacks

*Characters are based on https://xkcd.com/2176 and https://xkcd.com/1808/

Static Resource Partitioning as a Defense

Shared Hardware Resources

[⊗] Resource Starvation

[⊗] Resource Wastage

Shared Hardware Resources

Shared Hardware Resources

Shared Hardware Resources

[©] High Performance

Shared Hardware Resources

- ⁽ⁱ⁾ High Performance
- ⊗ Some Information Leakage

Shared Hardware Resources

1. Measure information leakage

1. Measure information leakage

Shared Hardware Resources

1. Measure information leakage

Shared Hardware Resources

2. Stop resizing once the leakage budget is reached

Less Leakage, More Performance

Less Leakage, More Performance

Lower leakage rate \Rightarrow More resizings under the budget \Rightarrow Better performance

Untangle: Contributions

Lower leakage rate \Rightarrow More resizings under the budget \Rightarrow Better performance

Our Main Contributions:

- A general framework to tightly quantify the leakage
 ③ Start fresh with leakage quantification in mind
- Designs that reduce the leakage

Threat Model

- A leakage budget
- No resizing after reaching the budget

- Directly observe the victim's resizing
- Observations are instantaneous and accurate

Generalized Dynamic Partitioning

Component 1: Utilization Metric

Reflects a program's resource demand and guides resizing

Example: Dynamic last-level cache (LLC) partitioning

Generalized Dynamic Partitioning

Component 2: Action Heuristic

Decides *what* resizing action to perform based on the utilization

Generalized Dynamic Partitioning

Component 3: Resizing Schedule

Determines when to check the utilization and perform the action

Split the Leakage

Action Leakage

Secret-dependent demand

Action Leakage: what resizing action to perform

Scheduling Leakage

Scheduling Leakage: when resizing action occurs

Check out our paper for more details on how we formally split the leakage

"What" and "When" are Entangled

"What" and "When" are Entangled

Hard to analyze!

Untangle It!

Eliminate action leakage

Measure and reduce it without analyzing program timing

Principle 1: Timing-Independent Metric

The value of the metric cannot depend on the actual instruction timing

Example of what is <u>not</u> a timing-independent metric for cache:

Cache hits are timing-dependent on out-of-order processors

Profiling window is timing-dependent

Principle 1: Timing-Independent Metric

The value of the metric cannot depend on the actual instruction timing

Turning it to a timing-independent metric:

Memory footprint of the past N retired instructions

Same value regardless of cache hits or not

Same profiling window regardless how fast the program runs

Principle 2: Progress-Based Schedule

Tie resizing points to when the program has made a certain progress (e.g., every 1B retired instructions)

Example of why a time-based schedule fails (e.g., resize after 1s)

[©] Progress-based schedule avoids this problem

Eliminating Action Leakage

Existing Static Analyses: CacheAudit¹, CaSym², etc

Eliminating Action Leakage

Existing Static Analyses: CacheAudit¹, CaSym², etc

Annotation only helps if the action leakage is timing-independent

¹Doychev et al., "CacheAudit: A Tool for the Static Analysis of Cache Side Channels" (USENIX Security'13) ²Brotzman et al., "CaSym: Cache aware symbolic execution for side channel detection and mitigation" (SP'19)

Bound Scheduling Leakage

Key Insight: information is encoded as the **duration** of remaining in a certain partition size

Covert Channel

Covert Channel

Victim cooperatively sends message to attacker using the scheduling "leakage"

Goal: find the <u>maximum data rate</u> between the sender and receiver → A conservative upper bound of scheduling leakage rate

③ Measure and reduce scheduling leakage without analyzing program timing

Mechanism 1: Enforce a Cooldown Time

Intuition: set a minimum wait time T_c (e.g., 1ms) between resizes to limit how often the sender can resize

Mechanism 2: Add Random Noise

Intuition: delay each action by a random time δ to disrupt the communication

Cause bit errors and reduce the amount of information the attacker learns

<u>Check out our paper for more details on the covert channel model</u>

Evaluation Setup

Augment a conventional dynamic last-level cache (LLC) partitioning scheme

Evaluation Results

Average Normalized IPC

Average Leakage per Resizing

Conclusion

- Untangle is a general framework for constructing low leakage, high-performance dynamic partitioning schemes
- **Formally** split the leakage into:

Action Leakage Scheduling Leakage

- **Design principles** to *untangle* program timing from the action leakage
- Model the scheduling leakage without analyzing program timing
- Applied to dynamic LLC partitioning ⇒ Same performance, less leakage

Thanks for Listening!

"Untango"