Replica: A Wireless Manycore for Communication-Intensive and Approximate Data

Vimuth Fernando¹, Antonio Franques¹, Sergi Abadal², Sasa Misailovic¹, Josep Torrellas¹

¹University of Illinois at Urbana-Champaign

² Universitat Politècnica de Catalunya

Motivation

Computations with broadcast and fine-grained data sharing do not scale well in shared-memory multiprocessor architectures

Master Thread

counter++;

barrier_wait(b)

Worker Threads

barrier_wait(b)

x = counter;

Manycore with a Network on Chip

Abadal et al. "WiSync: an architecture for fast synchronization through on-chip wireless communication." ASPLOS 2016

Abadal et al. "WiSync: an architecture for fast synchronization through on-chip wireless communication." ASPLOS 2016

In WiSync, ordinary data uses the wired network

Key Question

Can we leverage wireless communication to speed-up transfers of ordinary shared data?

Contributions: Replica

- A manycore architecture and software interface for wireless communication (sync and ordinary data)
- Hardware innovations
 - Adaptive wireless protocol
 - Selective packet dropping
- Software innovations
 - Transformations and tools to adapt applications to wireless
 - Optimizations for approximate computing
- For 64 core execution: speedup applications by 1.89x over a conventional multicore

Replica Architecture

Example

Write

Write

Atomic update of local and all remote BMems

Broadcast Memory for ordinary data

Broadcast Memory for ordinary data

Replica: Wireless channel

- One channel shared by all the cores
- Everyone receives what one core transmits
- Only one core can transmit at a given time
 - ensures the same order of updates across all BMems

Reads

Read: Local access

Challenges

• Limited wireless bandwidth: Only one core can transmit at a time

 Bounded size of the BMem: Arbitrary data structures will not fit

Solutions

- Limited wireless bandwidth: Only one core can transmit at a time
 - Adaptive wireless protocol
 - Selective message dropping
 - Approximate transformations to use less bandwidth
- Bounded size of the BMem: Arbitrary data structures will not fit

Solutions

- Limited wireless bandwidth: Only one core can transmit at a time
 - Adaptive wireless protocol
 - Selective message dropping
 - Approximate transformations to use less bandwidth
- Bounded size of the BMem: Arbitrary data structures will not fit
 - Software transformations to fit most important structures in BMem
 - Approximate transformations to use BMem effectively
 - Tools to identify/autotune highly-shared data structures

Wireless Protocol

- Wireless protocol organizes the accesses to the wireless network
- Two wireless protocols can be used based on application behavior
 - Broadcast Reliability Sensing protocol (BRS)
 - Token Ring protocol

Wireless Message

^{*} Yu, et al. "Architecture and Design of Mul5-Channel Millimeter-Wave Wireless Network-on-Chip," IEEE Design & Test, 2014 (scaled)

- Start sending message if the medium is free
- Two cores starting at the same time results in a collision

- No wasted cycles if low contention
- Lot of collisions if high contention

Token Ring Protocol

- Pass conceptual token among cores
- Can send wireless message only if the core owns the token

Token Ring Protocol

Unnecessary delays if low contention

Adaptive Wireless Protocol

- In Replica, the utilization of the wireless network vary across applications and within an application
 - Sparse traffic BRS
 - Bursty traffic Token Ring
- Replica uses an adaptive dynamic protocol that switches between the two by observing communication behavior
 - Number of collisions
 - Number of skipped token slots

Approximate transformations to use less bandwidth

Every write to data in the BMem results in a message being broadcasted

- We can reduce the pressure on the network by skipping some of the writes
 - Reducing communication at the cost of accuracy
- Many programs have shared data structures that are amenable to approximations

Opportunity in Replica: Dropping Messages

- All cores see the contention in the wireless network
- Can drop messages while maintaining the same state across all cores

Approximate stores

 Developers indicate approximable data structures approx_wireless_malloc(size)

 Stores to approximable variables are dropped if they cannot access the wireless network before a given threshold

Approximate stores

 Developers indicate approximable data structures approx_wireless_malloc(size)

 Stores to approximable variables are dropped if they cannot access the wireless network before a given threshold

Approximate transformations to use less bandwidth

- We used the approximate stores to implement primitives such as Approximate Locks
 - Spin lock that gives up trying to acquire a lock after some time

- Existing approximate techniques that reduce communication more useful in this resource constrained setting
 - Example: Skipping negligible updates to shared data

Addressing Bounded size of the BMem

- Software transformations to fit most important structures in BMem
- Approximate transformations to use BMem effectively
 - Example: Numerical precision reduction, Cyclic collection update
- Tools to identify highly-shared data and tune the application

See the paper for more details

Evaluation

- Cycle-level architectural simulations using Multi2sim
 - 64 core chip
 - 32-512 KB BMem
 - 2D Mesh wired network
- Applications
 - 10 benchmarks from PARSEC and CRONO
 - Multiple domain: Scientific simulations, computer vision, and graph applications

Benchmarks: Communication Patterns

Benchmark	Sharing Pattern	
Water	Broadcast	
BFS	Irregular: many-to-many	
Bodytrack	One-to-many	
SSSP	Irregular: many-to-many	
Canneal	Irregular	
CC	Irregular: many-to-many	
Streamcluster	One-to-many, reduction	
Pagerank	Irregular: many-to-many	
Community	Irregular: many-to-many	
Volrend	One-to-many	

BMem for sync variables (WiSync)

1.4x speed up over conventional wired multicore (Geometric Mean)

BMem for shared data

1.76x speed up (Geometric Mean)

Benchmarks: Approximation

Benchmark	Sharing Pattern	Approximations
Water	Broadcast	Precision reduction and Approximate Locks
BFS	Irregular: many-to-many	Approximate Stores
Bodytrack	One-to-many	Approximate Stores
SSSP	Irregular: many-to-many	Approximate Stores
Canneal	Irregular	Approximate Locks
CC	Irregular: many-to-many	Approximate Stores
Streamcluster	One-to-many, reduction	Cyclic collection updates
Pagerank	Irregular: many-to-many	Skipping negligible updates
Community	Irregular: many-to-many	Approximate Stores
Volrend	One-to-many	Approximate Stores

BMem for shared data + approximations

On average 1.89x speed up

Energy and area

- Since faster execution: 33% energy reduction
- Replica components: 9% of total energy consumed

Energy and area

- Since faster execution: 33% energy reduction
- Replica components: 9% of total energy consumed
- 15% increase in the area
 - 11% from the BMem + 4% from the transceiver/antenna
 - Using the same area to increase the L2 cache has little impact on performance (1.04x speedup)

Also in the paper

- Scalability analysis
- Power evaluation
- Area consumption
- Architecture sensitivity analysis
- Effectiveness of profiler and autotuner
- Statistics on developer effort to adapt programs

Conclusions

- Replica: a manycore that uses a wireless NoC to communicate ordinary data
- Hardware and Software innovations
 - Adaptive wireless protocol
 - Selective packet dropping
 - Software techniques to identify and allocate shared data in BMem
 - Software transformations for approximate computing
- Effectively supports communication-intensive computations
- Average speedup of 1.89x over conventional machines