
Replica: A Wireless Manycore for
Communication-Intensive and Approximate Data

Vimuth Fernando1, Antonio Franques1, Sergi Abadal2,

Sasa Misailovic1, Josep Torrellas1

1University of Illinois at
Urbana-Champaign

2 Universitat Politècnica de 
Catalunya

CCF-1629431
CCF-1703637

1



2

Master Thread​

counter++;

barrier_wait(b)

Worker Threads

barrier_wait(b)

x = counter;

Computations with broadcast and fine-grained data 
sharing do not scale well in shared-memory 
multiprocessor architectures

Motivation



Manycore with a Network on Chip

3

Master Thread​

counter++;

barrier_wait(b)

Worker Threads

barrier_wait(b)

x = counter;



WiSync: On-chip Wireless Communication 
for Synchronization

Abadal et al. "WiSync: an architecture for fast synchronization through on-chip wireless 
communication." ASPLOS 2016

4

Core

Broadcast memory
(16 KB)



WiSync: On-chip Wireless Communication 
for Synchronization

Wireless Antenna 
and Transceiver

Broadcast memory
(replicated contents)

Abadal et al. "WiSync: an architecture for fast synchronization through on-chip wireless 
communication." ASPLOS 2016

5



6

Core3
…
b 
…

Core15
…
b 
…

Master Thread​

barrier_wait(b)

Core0
…
b 
…

WiSync: On-chip Wireless Communication 
for Synchronization



7

Core3
…
b 
…

Core15
…
b 
…

Master Thread​

barrier_wait(b)

Core0
…
b 
…

WiSync: On-chip Wireless Communication 
for Synchronization



Core0
…
b 
…

8

Core3
…
b
…

Core15
…
b 
…

Master Thread​

barrier_wait(b)

WiSync: On-chip Wireless Communication 
for Synchronization



In WiSync, ordinary data uses the 
wired network

9

Master Thread​

counter++;

Worker Threads

x = counter;



Can we leverage wireless communication to speed-up 
transfers of ordinary shared data?

10

Key Question



Contributions: Replica

• A manycore architecture and software interface for 
wireless communication (sync and ordinary data)

• Hardware innovations
• Adaptive wireless protocol

• Selective packet dropping

• Software innovations
• Transformations and tools to adapt applications to wireless 

• Optimizations for approximate computing

• For 64 core execution: speedup applications by 1.89x 
over a conventional multicore

11



Core Controller

L1 
Cache

Transceiver

L2 Cache

BMem

Antenna

Wired
network

Directory

12

Replica Architecture

32-512 KB



Example

int* A = (int*) wireless_malloc(size)

13

BMem
A



Core Controller

L1 
Cache

Transceiver

L2 Cache

BMem

Antenna

Wired
network

Directory

14

Write 



Core Controller

L1 
Cache

Transceiver

L2 Cache

BMem

Antenna

Wired
network

Directory

15

Atomic update of local and all remote BMems

Write 



Broadcast Memory for ordinary data

Core0
…

counter:0
…

16

Core3
…

counter:0
…

Core15
…

counter:0
…

Master Thread​

counter++;



Broadcast Memory for ordinary data

Core0
…

counter:1
…

17

Core3
…

counter:1
…

Core15
…

counter:1
…

Master Thread​

counter++;



Replica: Wireless channel

18

• One channel shared by all the cores

• Everyone receives what one core transmits 

• Only one core can transmit at a given time
• ensures the same order of updates across all BMems



Core Controller

L1 
Cache

Transceiver

L2 Cache

BMem

Antenna

Wired
network

Directory

19

Reads

Read: Local access



Challenges

20

• Limited wireless bandwidth: Only one core can 
transmit at a time

• Bounded size of the BMem: Arbitrary data 
structures will not fit 



Solutions

• Limited wireless bandwidth: Only one core can 
transmit at a time
• Adaptive wireless protocol

• Selective message dropping

• Approximate transformations to use less bandwidth

• Bounded size of the BMem: Arbitrary data 
structures will not fit 

21



Solutions

• Limited wireless bandwidth: Only one core can 
transmit at a time
• Adaptive wireless protocol

• Selective message dropping

• Approximate transformations to use less bandwidth

• Bounded size of the BMem: Arbitrary data 
structures will not fit 
• Software transformations to fit most important structures 

in BMem

• Approximate transformations to use BMem effectively

• Tools to identify/autotune highly-shared data structures

22



• Wireless protocol organizes the accesses to the 
wireless network

• Two wireless protocols can be used based on 
application behavior
• Broadcast Reliability Sensing protocol (BRS) 

• Token Ring protocol

Wireless Protocol

23



Wireless Message

24

4 cycles at 20Gb/s*

Time 0 1 2 3 4 5

Address Value C

* Yu, et al. “Architecture and Design of Mul5-Channel Millimeter-Wave Wireless 
Network-on-Chip,” IEEE Design & Test, 2014 (scaled)



25

• Start sending message if the medium is free

• Two cores starting at the same time results in a collision

Broadcast Reliability Sensing Protocol 
(BRS) 



Broadcast Reliability Sensing Protocol 
(BRS) 

26

Time 0 1 2 3 4 5

Check if 
collision 
occurred

Check if 
medium is 

free



Broadcast Reliability Sensing Protocol 
(BRS) 

27

Time 

Core 0

Core 1



Broadcast Reliability Sensing Protocol 
(BRS) 

28

Time 

No wasted cycles if low contention 

Lot of collisions if high contention

Core 0

Core 1



Token Ring Protocol

29

• Pass conceptual token among cores

• Can send wireless message only if the core owns the token



Token Ring Protocol

30

Core 0

Core 1

Time 

Core 2

Core 3

No wasted cycles if high contention 

Unnecessary delays if low contention



• In Replica, the utilization of the wireless network vary across 
applications and within an application

• Sparse traffic – BRS

• Bursty traffic – Token Ring

• Replica uses an adaptive dynamic protocol that switches 
between the two by observing communication behavior 

• Number of collisions 

• Number of skipped token slots

Adaptive Wireless Protocol

31



Approximate transformations to use 
less bandwidth

• Every write to data in the BMem results in a message being 
broadcasted

• We can reduce the pressure on the network by skipping 
some of the writes 

• Reducing communication at the cost of accuracy

• Many programs have shared data structures that are 
amenable to approximations

32



33

Opportunity in Replica: Dropping 
Messages

• All cores see the contention in the wireless network

• Can drop messages while maintaining the same state across 
all cores 



Approximate stores

• Developers indicate approximable data structures
approx_wireless_malloc(size)

• Stores to approximable variables are dropped if they cannot 
access the wireless network before a given threshold

34



Approximate stores

• Developers indicate approximable data structures
approx_wireless_malloc(size)

• Stores to approximable variables are dropped if they cannot 
access the wireless network before a given threshold

35



Approximate transformations to use 
less bandwidth

• We used the approximate stores to implement primitives 
such as Approximate Locks

• Spin lock that gives up trying to acquire a lock after some 
time

• Existing approximate techniques that reduce communication 
more useful in this resource constrained setting

• Example: Skipping negligible updates to shared data

36



Addressing Bounded size of the 
BMem

• Software transformations to fit most important structures in 
BMem

• Approximate transformations to use BMem effectively

• Example: Numerical precision reduction, Cyclic 
collection update

• Tools to identify highly-shared data and tune the application

See the paper for more details

37



Evaluation

• Cycle-level architectural simulations using Multi2sim

• 64 core chip

• 32-512 KB BMem

• 2D Mesh wired network

• Applications 

• 10 benchmarks from PARSEC and CRONO

• Multiple domain: Scientific simulations, computer vision, 
and graph applications

38



Benchmarks: Communication Patterns 

Benchmark Sharing Pattern

Water Broadcast

BFS Irregular: many-to-many

Bodytrack One-to-many

SSSP Irregular: many-to-many

Canneal Irregular

CC Irregular: many-to-many

Streamcluster One-to-many, reduction

Pagerank Irregular: many-to-many

Community Irregular: many-to-many

Volrend One-to-many

39



40

0.5

1

1.5

2

2.5

3

3.5

Sp
ee

d
u

p
BMem for sync variables (WiSync)

1.4x speed up over conventional wired multicore (Geometric Mean) 

7.2

1.4x



41

0.5

1

1.5

2

2.5

3

3.5

Sp
ee

d
u

p
BMem for shared data

7.2 -> 9.77

1.4x

1.76x

1.76x speed up (Geometric Mean) 



Benchmarks: Approximation

Benchmark Sharing Pattern Approximations

Water Broadcast
Precision reduction and 
Approximate Locks

BFS Irregular: many-to-many Approximate Stores

Bodytrack One-to-many Approximate Stores

SSSP Irregular: many-to-many Approximate Stores

Canneal Irregular Approximate Locks

CC Irregular: many-to-many Approximate Stores

Streamcluster One-to-many, reduction Cyclic collection updates

Pagerank Irregular: many-to-many Skipping negligible updates

Community Irregular: many-to-many Approximate Stores

Volrend One-to-many Approximate Stores

42



43

0.5

1

1.5

2

2.5

3

3.5

Sp
ee

d
u

p
BMem for shared data + approximations

On average 1.89x speed up

7.2 -> 9.77

1.4x

1.76x
1.89x



0
0.2
0.4
0.6
0.8

1
1.2

44

Energy and area

En
er

gy
 

co
n

su
m

p
ti

o
n

• Since faster execution: 33% energy reduction
• Replica components: 9% of total energy consumed



45

Energy and area

• 15% increase in the area 
• 11% from the BMem + 4% from the transceiver/antenna
• Using the same area to increase the L2 cache has little 

impact on performance (1.04x speedup)

• Since faster execution: 33% energy reduction
• Replica components: 9% of total energy consumed

0
0.2
0.4
0.6
0.8

1
1.2

En
er

gy
 

co
n

su
m

p
ti

o
n



Also in the paper

• Scalability analysis

• Power evaluation

• Area consumption

• Architecture sensitivity analysis

• Effectiveness of profiler and autotuner

• Statistics on developer effort to adapt programs

46



Conclusions

• Replica: a manycore that uses a wireless NoC to 
communicate ordinary data

• Hardware and Software innovations

• Adaptive wireless protocol

• Selective packet dropping

• Software techniques to identify and allocate shared data 
in BMem

• Software transformations for approximate computing

• Effectively supports communication-intensive computations

• Average speedup of 1.89x over conventional machines

47


