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Computations with broadcast and fine-grained data 
sharing do not scale well in shared-memory 
multiprocessor architectures

Motivation



Manycore with a Network on Chip
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WiSync: On-chip Wireless Communication 
for Synchronization

Abadal et al. "WiSync: an architecture for fast synchronization through on-chip wireless 
communication." ASPLOS 2016
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WiSync: On-chip Wireless Communication 
for Synchronization

Wireless Antenna 
and Transceiver

Broadcast memory
(replicated contents)

Abadal et al. "WiSync: an architecture for fast synchronization through on-chip wireless 
communication." ASPLOS 2016
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In WiSync, ordinary data uses the 
wired network
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Can we leverage wireless communication to speed-up 
transfers of ordinary shared data?

10

Key Question



Contributions: Replica

• A manycore architecture and software interface for 
wireless communication (sync and ordinary data)

• Hardware innovations
• Adaptive wireless protocol

• Selective packet dropping

• Software innovations
• Transformations and tools to adapt applications to wireless 

• Optimizations for approximate computing

• For 64 core execution: speedup applications by 1.89x 
over a conventional multicore
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Replica Architecture

32-512 KB



Example

int* A = (int*) wireless_malloc(size)
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Atomic update of local and all remote BMems

Write 



Broadcast Memory for ordinary data
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Replica: Wireless channel
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• One channel shared by all the cores

• Everyone receives what one core transmits 

• Only one core can transmit at a given time
• ensures the same order of updates across all BMems
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Reads

Read: Local access



Challenges
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• Limited wireless bandwidth: Only one core can 
transmit at a time

• Bounded size of the BMem: Arbitrary data 
structures will not fit 



Solutions

• Limited wireless bandwidth: Only one core can 
transmit at a time
• Adaptive wireless protocol

• Selective message dropping

• Approximate transformations to use less bandwidth

• Bounded size of the BMem: Arbitrary data 
structures will not fit 
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Solutions

• Limited wireless bandwidth: Only one core can 
transmit at a time
• Adaptive wireless protocol

• Selective message dropping

• Approximate transformations to use less bandwidth

• Bounded size of the BMem: Arbitrary data 
structures will not fit 
• Software transformations to fit most important structures 

in BMem

• Approximate transformations to use BMem effectively

• Tools to identify/autotune highly-shared data structures
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• Wireless protocol organizes the accesses to the 
wireless network

• Two wireless protocols can be used based on 
application behavior
• Broadcast Reliability Sensing protocol (BRS) 

• Token Ring protocol

Wireless Protocol
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Wireless Message
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4 cycles at 20Gb/s*

Time 0 1 2 3 4 5

Address Value C

* Yu, et al. “Architecture and Design of Mul5-Channel Millimeter-Wave Wireless 
Network-on-Chip,” IEEE Design & Test, 2014 (scaled)
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• Start sending message if the medium is free

• Two cores starting at the same time results in a collision

Broadcast Reliability Sensing Protocol 
(BRS) 



Broadcast Reliability Sensing Protocol 
(BRS) 
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Broadcast Reliability Sensing Protocol 
(BRS) 
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Broadcast Reliability Sensing Protocol 
(BRS) 
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Token Ring Protocol
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• Pass conceptual token among cores

• Can send wireless message only if the core owns the token



Token Ring Protocol
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• In Replica, the utilization of the wireless network vary across 
applications and within an application

• Sparse traffic – BRS

• Bursty traffic – Token Ring

• Replica uses an adaptive dynamic protocol that switches 
between the two by observing communication behavior 

• Number of collisions 

• Number of skipped token slots

Adaptive Wireless Protocol
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Approximate transformations to use 
less bandwidth

• Every write to data in the BMem results in a message being 
broadcasted

• We can reduce the pressure on the network by skipping 
some of the writes 

• Reducing communication at the cost of accuracy

• Many programs have shared data structures that are 
amenable to approximations
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Opportunity in Replica: Dropping 
Messages

• All cores see the contention in the wireless network

• Can drop messages while maintaining the same state across 
all cores 



Approximate stores

• Developers indicate approximable data structures
approx_wireless_malloc(size)

• Stores to approximable variables are dropped if they cannot 
access the wireless network before a given threshold
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Approximate stores

• Developers indicate approximable data structures
approx_wireless_malloc(size)

• Stores to approximable variables are dropped if they cannot 
access the wireless network before a given threshold
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Approximate transformations to use 
less bandwidth

• We used the approximate stores to implement primitives 
such as Approximate Locks

• Spin lock that gives up trying to acquire a lock after some 
time

• Existing approximate techniques that reduce communication 
more useful in this resource constrained setting

• Example: Skipping negligible updates to shared data
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Addressing Bounded size of the 
BMem

• Software transformations to fit most important structures in 
BMem

• Approximate transformations to use BMem effectively

• Example: Numerical precision reduction, Cyclic 
collection update

• Tools to identify highly-shared data and tune the application

See the paper for more details
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Evaluation

• Cycle-level architectural simulations using Multi2sim

• 64 core chip

• 32-512 KB BMem

• 2D Mesh wired network

• Applications 

• 10 benchmarks from PARSEC and CRONO

• Multiple domain: Scientific simulations, computer vision, 
and graph applications
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Benchmarks: Communication Patterns 

Benchmark Sharing Pattern

Water Broadcast

BFS Irregular: many-to-many

Bodytrack One-to-many

SSSP Irregular: many-to-many

Canneal Irregular

CC Irregular: many-to-many

Streamcluster One-to-many, reduction

Pagerank Irregular: many-to-many

Community Irregular: many-to-many

Volrend One-to-many
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Benchmarks: Approximation

Benchmark Sharing Pattern Approximations

Water Broadcast
Precision reduction and 
Approximate Locks

BFS Irregular: many-to-many Approximate Stores

Bodytrack One-to-many Approximate Stores

SSSP Irregular: many-to-many Approximate Stores

Canneal Irregular Approximate Locks

CC Irregular: many-to-many Approximate Stores

Streamcluster One-to-many, reduction Cyclic collection updates

Pagerank Irregular: many-to-many Skipping negligible updates

Community Irregular: many-to-many Approximate Stores

Volrend One-to-many Approximate Stores
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Energy and area
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• Since faster execution: 33% energy reduction
• Replica components: 9% of total energy consumed
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Energy and area

• 15% increase in the area 
• 11% from the BMem + 4% from the transceiver/antenna
• Using the same area to increase the L2 cache has little 

impact on performance (1.04x speedup)

• Since faster execution: 33% energy reduction
• Replica components: 9% of total energy consumed
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Also in the paper

• Scalability analysis

• Power evaluation

• Area consumption

• Architecture sensitivity analysis

• Effectiveness of profiler and autotuner

• Statistics on developer effort to adapt programs
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Conclusions

• Replica: a manycore that uses a wireless NoC to 
communicate ordinary data

• Hardware and Software innovations

• Adaptive wireless protocol

• Selective packet dropping

• Software techniques to identify and allocate shared data 
in BMem

• Software transformations for approximate computing

• Effectively supports communication-intensive computations

• Average speedup of 1.89x over conventional machines
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