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Overview

Allow speculative execution passed sync points
A ti  b i– Active barriers

– Busy locks
– Unset flags– Unset flags

Apply thread-level spec idea to explicitly parallel programs
– Buffer speculative data (caches)Buffer speculative data (caches)
– Detect and repair dependence violations on the fly
– Forward progress: Keep one safe thread at all timesp g p

~ 35% sync time reduction, ~ 7.5% exec time reduction
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Synchronization in Parallel Programs

Synchronization to ensure correctness
B i– Barriers

– Locks
– Flags (spinlocks)– Flags (spinlocks)

Applied by compilers and programmers alike
– Parallelizing compilers: often full barriersParallelizing compilers: often full barriers
– Programmers: often sync primitives

• Macros (M4, ...)( )
• Directives (OpenMP, ...)
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Problem: Conservative Synchronization

Barries, locks, flags often placed conservatively
H d t l   tt– Hard-to-analyze memory access patterns

• Pointer accesses
– Corner cases in mostly race-free codes– Corner cases in mostly race-free codes

• Hashed accesses
– Aggressive sync not affordablegg y

• Too time-consuming
• Too complicated
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Technique: Thread-Level Speculation*

Execute hard-to-analyze codes in parallel—speculatively
B ff  l ti  d t  ( h )– Buffer speculative data (caches)

– Detect dependence violations
– Roll back offending threads on the fly– Roll back offending threads on the fly
– Keep one safe thread at all times → forward progress
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Proposal: Speculative Synchronization

Execute synchronized code concurrently—speculatively
Speculate past active barriers  busy locks  unset flagsSpeculate past active barriers, busy locks, unset flags
– Buffers speculative data (caches)
– Detect dependence violationsp
– Roll back offending threads
– Keep safe thread(s)

• Lock: owner
• Flag: producer
• Barrier: lagging threadsBarrier: lagging threads

Mechanism: offload sync op
from CPU
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Important Features of our Proposal

Unified HW support for spec barriers, locks, flags
C  ibl   if fli tConcurrency possible even if conflicts
– Forward progress guaranteed by safe thread

All in order safe to spec conflicts tolerated– All in-order safe-to-spec conflicts tolerated
Simple HW

No order among spec threads → simpler than full TLS– No order among spec threads → simpler than full TLS
No programming effort

Retargeted macros / directives– Retargeted macros / directives
Compatible with conventional sync at run time
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Example: Speculative Barrier

A B C
BARRIER

A B C

Safe
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Example: Speculative Barrier

A BA B
BARRIER

C

Safe
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Example: Speculative Barrier

BB
BARRIER

A C

Safe
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Example: Speculative Barrier

BARRIER

A B C

Safe
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Example: Speculative Lock

A B C D E
ACQUIRE

A B C D E

RELEASE

Safe
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Example: Speculative Lock

B C D EB C D E
ACQUIRE

A

RELEASE

Safe
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Example: Speculative Lock

C DC D
ACQUIRE

A B E

RELEASE

Safe
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Example: Speculative Lock

DD
ACQUIRE

A B C

E
RELEASE

E

Safe
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Example: Speculative Lock

D
ACQUIRE

D

CB

A E
RELEASE

A E

Safe
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Speculative Synchronization Unit (SSU)

Extends cache controller
Si l  h dSimple hardware
– 1 extra “cache line”

1 Spec bit / cache line– 1 Spec bit / cache line
– Some control logic

Modest HW overheadModest HW overhead
– About 2KB for

• L1 = 16KBL1  16KB
• L2 = 1MB
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Speculative Lock Request

CPU side:
S l  l k dd  t  SSU

A

– Supply lock address to SSU
– Checkpoint register file in HW

SSU side:

R

SSU side:
– Initiate T&T&S loop on lock variable

CPU proceeds into sync’d codeCPU proceeds into sync d code
Use caches as speculative buffer

Set Spec bit in lines accessed speculatively– Set Spec bit in lines accessed speculatively
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Lock Acquire and Thread Commit

SSU acquires lock (T&S successful)
G l  ll S bit

A

– Gang-clears all Spec bits
→ one-shot thread commit

– Becomes idle

R

Becomes idle
Release issued later by processor
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Release while Speculative (RWS)

CPU issues release, but SSU still active
SSU i t t  l  b  

A

– SSU intercepts release by processor
– Mark in SSU: “release issued”

When lock becomes available  SSU:

R

AWhen lock becomes available, SSU:
– Does not perform T&S
– Gang-clears all Spec bits

A

R

Gang clears all Spec bits
→ one-shot thread commit

Thread commits without acquiring lockq g
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Mem Access Conflict and Thread Squash

Leverage coherence messages
R t t  f  li  i  ll– Request to safe line: service normally

– Request to spec line: squash thread
• Gang-invalidate lines marked Spec+Dirty• Gang-invalidate lines marked Spec+Dirty

→ one-shot squash
• Gang-clear all Spec bits
• Roll back & restart at sync point

Safe threads never squashed → forward progress
All in-order safe-to-spec dependences tolerated
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Speculative Buffer Overflow (Cache)

When cache about to overflow
S f  th d  ti   l– Safe thread: continue as usual

– Spec thread: stall & wait
Stalled spec thread does not affect other threadsStalled spec thread does not affect other threads
Spec thread eventually becomes safe

Then continue as usual– Then continue as usual
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Speculative Flags and Barriers

Flag: Leverage spec lock support
S l  dd  “ ” l  t  SSU– Supply address, “pass” value to SSU

– Mark in SSU: “release issued” (as in RWS)
• Only Test—no T&S• Only Test—no T&S

– Commit when “pass” read

Barrier: Leverage spec flag support
– Producer = last thread to arriveProducer  last thread to arrive
– If not last one, spin on flag speculatively
– Last thread toggles flag
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Example: Retargeted M4 Macros

No programming effort
C tibl  t ti  ith ti l Compatible at runtime with conventional sync
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TLR Vs Speculative Synchronization

Execute critical sections speculatively
Leverage coherence protocolLeverage coherence protocol

Guaranteed forward progress even if conflicts
No programming effort

TLR Speculative Synchronization

p g g

Philosophy: Lock-free sync
Focuses on spec locks
L k f  t

Philosophy: Thread-level spec
Spec barriers, locks, flags
N t l k f * (b t RWS)Lock-free guarantees Not lock-free* (but RWS)
– Simpler HW

(c) 2002 José F. Martínez - Speculative Synchronization*Adaptive extension—see paper



Experimental Setup

Node:
1GH  4 i  d i  l  – 1GHz 4-issue dynamic superscalar processor

– 16KB 2-way L1, 256(64)KB 8-way L2
– SSU– SSU

16(64)-node CC-NUMA
– MESI coherence protocolMESI coherence protocol

Uncontended RT
– 2ns L1, 12ns L22ns L1, 12ns L2
– 95ns local, 175ns neighbor
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Applications

Mix of parallel codes
C il ll li d (P l i )  APPLU* (SPECf 95)– Compiler-parallelized (Polaris): APPLU* (SPECfp95)

– Annotated: Bisort*, MST (Olden)
– Hand-tuned: Ocean  Barnes (SPLASH-2)– Hand-tuned: Ocean, Barnes (SPLASH-2)

(c) 2002 José F. Martínez - Speculative Synchronization*Barrier-only code



Summary of Results

A   ti  d ti   35%Average sync time reduction ~ 35%
– Promising for such simple hardware

Execution time reduction up to ~ 15%, avg. ~ 7.5%

Room for improvement
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Execution Time Reduction

Across the board exec time reduction  7 5%

(c) 2002 José F. Martínez - Speculative Synchronization

Across-the-board exec time reduction ~ 7.5%



Sync Time Reduction

Large sync reduction ~ 35%

(c) 2002 José F. Martínez - Speculative Synchronization

g y
Room for improvement



Summary

Speculative Synchronization very effective
P i i  d– Promising speedups

Thread-level spec works for parallel programs, too
Safe thread critical path largely unaffected– Safe thread → critical path largely unaffected

– Spec cache overflow simply stalls
Simple hardwareSimple hardware
No programming effort
Room for improvementRoom for improvement
– Residual sync, false sharing, …
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