
S l ti S h i ti A l iSpeculative Synchronization: Applying
Thread‐Level Speculation to Parallel

Applications

J é F M tí d J T ll*José F. Martínez and Josep Torrellas
University of Illinois

ASPLOS 2002ASPLOS 2002

* Now at Cornell University Now at Cornell University

Overview

Allow speculative execution passed sync points
A ti b i– Active barriers

– Busy locks
– Unset flags– Unset flags

Apply thread-level spec idea to explicitly parallel programs
– Buffer speculative data (caches)Buffer speculative data (caches)
– Detect and repair dependence violations on the fly
– Forward progress: Keep one safe thread at all timesp g p

~ 35% sync time reduction, ~ 7.5% exec time reduction

(c) 2002 José F. Martínez - Speculative Synchronization

Synchronization in Parallel Programs

Synchronization to ensure correctness
B i– Barriers

– Locks
– Flags (spinlocks)– Flags (spinlocks)

Applied by compilers and programmers alike
– Parallelizing compilers: often full barriersParallelizing compilers: often full barriers
– Programmers: often sync primitives

• Macros (M4, ...)()
• Directives (OpenMP, ...)

(c) 2002 José F. Martínez - Speculative Synchronization

Problem: Conservative Synchronization

Barries, locks, flags often placed conservatively
H d t l tt– Hard-to-analyze memory access patterns

• Pointer accesses
– Corner cases in mostly race-free codes– Corner cases in mostly race-free codes

• Hashed accesses
– Aggressive sync not affordablegg y

• Too time-consuming
• Too complicated

(c) 2002 José F. Martínez - Speculative Synchronization

Technique: Thread-Level Speculation*

Execute hard-to-analyze codes in parallel—speculatively
B ff l ti d t (h)– Buffer speculative data (caches)

– Detect dependence violations
– Roll back offending threads on the fly– Roll back offending threads on the fly
– Keep one safe thread at all times → forward progress

i=k i=k+1 i=k+2 i=k+30
…=a[4]…

…
a[5]=

…=a[1]…
…

a[2]=

…=a[8]…
…

a[9]=

…=a[5]…
…

a[6]=

i k i k 1 i k 2 i k 3for(i=0;i<n;i++)
…=a[b[i]]…

…
a[c[i]]=

RAW
a[5]=… a[2]=… a[9]=… a[6]=…a[c[i]]=…

…=a[5]…
…

RAW
Forward
Progress

(c) 2002 José F. Martínez - Speculative Synchronization*a.k.a. speculative parallelization

a[6]=…Progress

Proposal: Speculative Synchronization

Execute synchronized code concurrently—speculatively
Speculate past active barriers busy locks unset flagsSpeculate past active barriers, busy locks, unset flags
– Buffers speculative data (caches)
– Detect dependence violationsp
– Roll back offending threads
– Keep safe thread(s)

• Lock: owner
• Flag: producer
• Barrier: lagging threadsBarrier: lagging threads

Mechanism: offload sync op
from CPU

(c) 2002 José F. Martínez - Speculative Synchronization

Important Features of our Proposal

Unified HW support for spec barriers, locks, flags
C ibl if fli tConcurrency possible even if conflicts
– Forward progress guaranteed by safe thread

All in order safe to spec conflicts tolerated– All in-order safe-to-spec conflicts tolerated
Simple HW

No order among spec threads → simpler than full TLS– No order among spec threads → simpler than full TLS
No programming effort

Retargeted macros / directives– Retargeted macros / directives
Compatible with conventional sync at run time

(c) 2002 José F. Martínez - Speculative Synchronization

Example: Speculative Barrier

A B C
BARRIER

A B C

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Barrier

A BA B
BARRIER

C

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Barrier

BB
BARRIER

A C

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Barrier

BARRIER

A B C

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Lock

A B C D E
ACQUIRE

A B C D E

RELEASE

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Lock

B C D EB C D E
ACQUIRE

A

RELEASE

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Lock

C DC D
ACQUIRE

A B E

RELEASE

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Lock

DD
ACQUIRE

A B C

E
RELEASE

E

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Example: Speculative Lock

D
ACQUIRE

D

CB

A E
RELEASE

A E

Safe

(c) 2002 José F. Martínez - Speculative Synchronization

Safe
Speculative

Speculative Synchronization Unit (SSU)

Extends cache controller
Si l h dSimple hardware
– 1 extra “cache line”

1 Spec bit / cache line– 1 Spec bit / cache line
– Some control logic

Modest HW overheadModest HW overhead
– About 2KB for

• L1 = 16KBL1 16KB
• L2 = 1MB

(c) 2002 José F. Martínez - Speculative Synchronization

Speculative Lock Request

CPU side:
S l l k dd t SSU

A

– Supply lock address to SSU
– Checkpoint register file in HW

SSU side:

R

SSU side:
– Initiate T&T&S loop on lock variable

CPU proceeds into sync’d codeCPU proceeds into sync d code
Use caches as speculative buffer

Set Spec bit in lines accessed speculatively– Set Spec bit in lines accessed speculatively

(c) 2002 José F. Martínez - Speculative Synchronization

Lock Acquire and Thread Commit

SSU acquires lock (T&S successful)
G l ll S bit

A

– Gang-clears all Spec bits
→ one-shot thread commit

– Becomes idle

R

Becomes idle
Release issued later by processor

(c) 2002 José F. Martínez - Speculative Synchronization

Release while Speculative (RWS)

CPU issues release, but SSU still active
SSU i t t l b

A

– SSU intercepts release by processor
– Mark in SSU: “release issued”

When lock becomes available SSU:

R

AWhen lock becomes available, SSU:
– Does not perform T&S
– Gang-clears all Spec bits

A

R

Gang clears all Spec bits
→ one-shot thread commit

Thread commits without acquiring lockq g

(c) 2002 José F. Martínez - Speculative Synchronization

Mem Access Conflict and Thread Squash

Leverage coherence messages
R t t f li i ll– Request to safe line: service normally

– Request to spec line: squash thread
• Gang-invalidate lines marked Spec+Dirty• Gang-invalidate lines marked Spec+Dirty

→ one-shot squash
• Gang-clear all Spec bits
• Roll back & restart at sync point

Safe threads never squashed → forward progress
All in-order safe-to-spec dependences tolerated

(c) 2002 José F. Martínez - Speculative Synchronization

Speculative Buffer Overflow (Cache)

When cache about to overflow
S f th d ti l– Safe thread: continue as usual

– Spec thread: stall & wait
Stalled spec thread does not affect other threadsStalled spec thread does not affect other threads
Spec thread eventually becomes safe

Then continue as usual– Then continue as usual

(c) 2002 José F. Martínez - Speculative Synchronization

Speculative Flags and Barriers

Flag: Leverage spec lock support
S l dd “ ” l t SSU– Supply address, “pass” value to SSU

– Mark in SSU: “release issued” (as in RWS)
• Only Test—no T&S• Only Test—no T&S

– Commit when “pass” read

Barrier: Leverage spec flag support
– Producer = last thread to arriveProducer last thread to arrive
– If not last one, spin on flag speculatively
– Last thread toggles flag

(c) 2002 José F. Martínez - Speculative Synchronization

Example: Retargeted M4 Macros

No programming effort
C tibl t ti ith ti l Compatible at runtime with conventional sync

(c) 2002 José F. Martínez - Speculative Synchronization

TLR Vs Speculative Synchronization

Execute critical sections speculatively
Leverage coherence protocolLeverage coherence protocol

Guaranteed forward progress even if conflicts
No programming effort

TLR Speculative Synchronization

p g g

Philosophy: Lock-free sync
Focuses on spec locks
L k f t

Philosophy: Thread-level spec
Spec barriers, locks, flags
N t l k f * (b t RWS)Lock-free guarantees Not lock-free* (but RWS)
– Simpler HW

(c) 2002 José F. Martínez - Speculative Synchronization*Adaptive extension—see paper

Experimental Setup

Node:
1GH 4 i d i l – 1GHz 4-issue dynamic superscalar processor

– 16KB 2-way L1, 256(64)KB 8-way L2
– SSU– SSU

16(64)-node CC-NUMA
– MESI coherence protocolMESI coherence protocol

Uncontended RT
– 2ns L1, 12ns L22ns L1, 12ns L2
– 95ns local, 175ns neighbor

(c) 2002 José F. Martínez - Speculative Synchronization

Applications

Mix of parallel codes
C il ll li d (P l i) APPLU* (SPECf 95)– Compiler-parallelized (Polaris): APPLU* (SPECfp95)

– Annotated: Bisort*, MST (Olden)
– Hand-tuned: Ocean Barnes (SPLASH-2)– Hand-tuned: Ocean, Barnes (SPLASH-2)

(c) 2002 José F. Martínez - Speculative Synchronization*Barrier-only code

Summary of Results

A ti d ti 35%Average sync time reduction ~ 35%
– Promising for such simple hardware

Execution time reduction up to ~ 15%, avg. ~ 7.5%

Room for improvement

(c) 2002 José F. Martínez - Speculative Synchronization

Execution Time Reduction

Across the board exec time reduction 7 5%

(c) 2002 José F. Martínez - Speculative Synchronization

Across-the-board exec time reduction ~ 7.5%

Sync Time Reduction

Large sync reduction ~ 35%

(c) 2002 José F. Martínez - Speculative Synchronization

g y
Room for improvement

Summary

Speculative Synchronization very effective
P i i d– Promising speedups

Thread-level spec works for parallel programs, too
Safe thread critical path largely unaffected– Safe thread → critical path largely unaffected

– Spec cache overflow simply stalls
Simple hardwareSimple hardware
No programming effort
Room for improvementRoom for improvement
– Residual sync, false sharing, …

(c) 2002 José F. Martínez - Speculative Synchronization

S l ti S h i ti A l iSpeculative Synchronization: Applying
Thread‐Level Speculation to Parallel

Applications

J é F M tí d J T ll*José F. Martínez and Josep Torrellas
University of Illinois

ASPLOS 2002ASPLOS 2002

* Now at Cornell University Now at Cornell University

