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Overview

= Allow speculative execution passed sync points
— Active barriers
— Busy locks
— Unset flags

= Apply thread-level spec idea to explicitly parallel programs
— Buffer speculative data (caches)
— Detect and repair dependence violations on the fly
— Forward progress: Keep one safe thread at all times

= ~ 35% sync time reduction, ~ 7.5% exec time reduction
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Synchronization in Parallel Programs

= Synchronization to ensure correctness
— Barriers
— Locks
— Flags (spinlocks)
= Applied by compilers and programmers alike
— Parallelizing compilers: often full barriers
— Programmers: often sync primitives
« Macros (M4, ...)
e Directives (OpenMP, ...)
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Problem: Conservative Synchronization

= Barries, locks, flags often placed conservatively

— Hard-to-analyze memory access patterns
e Pointer accesses

— Corner cases in mostly race-free codes
 Hashed accesses

— Aggressive sync not affordable
* Too time-consuming
 Too complicated
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Technique: Thread-Level Speculation*

= Execute hard-to-analyze codes in parallel—speculatively
— Buffer speculative data (caches)
— Detect dependence violations
— Roll back offending threads on the fly
— Keep one safe thread at all times — forward progress
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Proposal: Speculative Synchronization

= Execute synchronized code concurrently—speculatively

= Speculate past active barriers, busy locks, unset flags
— Buffers speculative data (caches)
— Detect dependence violations
— Roll back offending threads
— Keep safe thread(s)
e Lock: owner
* Flag: producer
« Barrier: lagging threads

= Mechanism: offload sync op

from CPU .
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Important Features of our Proposal

= Unified HW support for spec barriers, locks, flags

= Concurrency possible even if conflicts
— Forward progress guaranteed by safe thread
— All in-order safe-to-spec conflicts tolerated

= Simple HW
— No order among spec threads — simpler than full TLS

= No programming effort
— Retargeted macros / directives

= Compatible with conventional sync at run time
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Example: Speculative Barrier
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Example: Speculative Barrier
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Example: Speculative Barrier
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Example: Speculative Barrier
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Example: Speculative Lock
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Example: Speculative Lock
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Example: Speculative Lock
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Example: Speculative Lock
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Example: Speculative Lock
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Speculative Synchronization Unit (SSU)

= Extends cache controller
= Simple hardware CPU

— 1 extra “cache line”

— 1 Spec bit / cache line Logic
— Some control logic i L1

= Modest HW overhead S
— About 2KB for
« L1=16KB
« L2=1MB

L2
|
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Speculative Lock Request

= CPU side: A 3
— Supply lock address to SSU ®
— Checkpoint register file in HW

= SSU side:
— Initiate T&T&S loop on lock variable

= CPU proceeds into sync’d code

= Use caches as speculative buffer
— Set Spec bit in lines accessed speculatively
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Lock Acquire and Thread Commit

= SSU acquires lock (T&S successful) A
— Gang-clears all Spec bits R — ®
— one-shot thread commit ¢
— Becomes idle

= Release issued later by processor
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Release while Speculative (RWS)

= CPU issues release, but SSU still active A
— SSU intercepts release by processor . d l
— Mark in SSU: “release issued” ‘
= When lock becomes available, SSU: A
— Does not perform T&S <=
— Gang-clears all Spec bhits o0

— one-shot thread commit
= Thread commits without acquiring lock
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Mem Access Conflict and Thread Squash

. Leverage coherence MEeSSages
— Request to safe line: service normally
— Request to spec line: squash thread

 Gang-invalidate lines marked Spec+Dirty
— one-shot squash

 Gang-clear all Spec bits
* Roll back & restart at sync point

= Safe threads never squashed — forward progress
= All in-order safe-to-spec dependences tolerated
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Speculative Buffer Overflow (Cache)

= \When cache about to overflow
— Safe thread: continue as usual
— Spec thread: stall & wait

= Stalled spec thread does not affect other threads

= Spec thread eventually becomes safe
— Then continue as usual
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Speculative Flags and Barriers

= Flag: Leverage spec lock support o t
— Supply address, “pass” value to SSU
— Mark in SSU: “release issued” (as in RWS) ()
e Only Test—no T&S d

— Commit when “pass” read

= Barrier: Leverage spec flag support d .
— Producer = last thread to arrive ‘
— If not last one, spin on flag speculatively
— Last thread toggles flag ¥
X
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Example: Retargeted M4 Macros

= No programming effort
nle at runtime with conventional sync

= Compat

‘ Conventional Macros (Existing)

Speculative Macros (Proposed)

S8 SYNC ('{
while(!ssu idle());}’)

LOCK ({
lock($1) ;1)

[f-E Natal XA

if(1ssu lock (&$1))

LOCR e L) ] ]

UNLOCK ($1.1lock)

} else {
UNLOCK ($1 . 1lock)
ATT($1.f,51.1f[PID])

)

UNLOCK (* { SS UNLOCK (" {
unlock ($1);}") UNLOCK ($1) } ')
WAIT (' { S (it
while ($1 !'= $2);}") if (!ssu wait(&$1,$2))
{72 S =Y Ry
BARRIER (' { SS BARRIER (' {
$1.1f[PID] = !$1.1f[PID]; :::;ii::jD] = 181.1f[PID];
LOCK (31 .1lock) SS SYNC
S1l.c++; ! Tock)
if ($1.c == NUMPROC) { Sl.c++;
$1.f = $1.1f [PID]; if ($1.c == NUMPROC) {

S1.f = $1.1£[PID];
UNLOCK ($1.1lock)

} else {
IINTL,OCK (S1  1ock)

lSS_WAIT($1.f,$1.1f[PID])
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TLR Vs Speculative Synchronization

= Execute critical sections speculatively
= |everage coherence protocol
= Guaranteed forward progress even if conflicts
= No programming effort

TLR Speculative Synchronization
= Philosophy: Lock-free sync = Philosophy: Thread-level spec
= Focuses on spec locks = Spec barriers, locks, flags
= Lock-free guarantees = Not lock-free* (but RWS)

— Simpler HW
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Experimental Setup

= Node:
— 1GHz 4-issue dynamic superscalar processor
— 16KB 2-way L1, 256(64)KB 8-way L2
- SSU
= 16(64)-node CC-NUMA
— MESI coherence protocol

= Uncontended RT
- 2ns L1, 12ns L2
— 95ns local, 175ns neighbor
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Applications

= Mix of parallel codes
— Compiler-parallelized (Polaris): APPLU* (SPECfp95)
— Annotated: Bisort*, MST (Olden)
— Hand-tuned: Ocean, Barnes (SPLASH-2)
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Summary of Results

= Average sync time reduction ~ 35%
— Promising for such simple hardware

= Execution time reduction up to ~ 15%, avg. ~ 7.5%

= Room for improvement
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Execution Time Reduction
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Sync Time Reduction

Barnes Barnes
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Summary

= Speculative Synchronization very effective
— Promising speedups
= Thread-level spec works for parallel programs, too

— Safe thread — critical path largely unaffected
— Spec cache overflow simply stalls

= Simple hardware
= No programming effort

= Room for improvement
— Residual sync, false sharing, ...
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