Speculative Synchronization: Applying
Thread-Level Speculation to Parallel
Applications

José F. Martinez™ and Josep Torrellas

University of Illinois
ASPLOS 2002

] * Now at Cornell University
(CORNELL .
1867 I-acoma

e group

Overview

= Allow speculative execution passed sync points
— Active barriers
— Busy locks
— Unset flags

= Apply thread-level spec idea to explicitly parallel programs
— Buffer speculative data (caches)
— Detect and repair dependence violations on the fly
— Forward progress: Keep one safe thread at all times

= ~ 35% sync time reduction, ~ 7.5% exec time reduction

] CORNELL
1867

I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Synchronization in Parallel Programs

= Synchronization to ensure correctness
— Barriers
— Locks
— Flags (spinlocks)
= Applied by compilers and programmers alike
— Parallelizing compilers: often full barriers
— Programmers: often sync primitives
« Macros (M4, ...)
e Directives (OpenMP, ...)

I :
CORNELL I-acoma
1867 (c) 2002 José F. Martinez - Speculative Synchronization ~~~_ group

Problem: Conservative Synchronization

= Barries, locks, flags often placed conservatively

— Hard-to-analyze memory access patterns
e Pointer accesses

— Corner cases in mostly race-free codes
 Hashed accesses

— Aggressive sync not affordable
* Too time-consuming
 Too complicated

= |

€ = = = e = = -

(c) 2002 José F. Martinez - Speculative Synchronization

Technique: Thread-Level Speculation*

= Execute hard-to-analyze codes in parallel—speculatively
— Buffer speculative data (caches)
— Detect dependence violations
— Roll back offending threads on the fly
— Keep one safe thread at all times — forward progress

for(i=osi<n;i++) | 'K i=k+l i=k+2 i=k+3
.=a[b[i1l. | .=a[41.

Forward {=als>1y
Y Progress a[6]=..

I
I
alc[ill=. [[al5]=|4{=
|
|

T

CORNELL . . o
1867 . *a' ka’ SpeCU|atlve paral |ellzat|0n (c) 2002 José F. Martinez - Speculative Synchronization Ic’vxgelg'!(!g

Proposal: Speculative Synchronization

= Execute synchronized code concurrently—speculatively

= Speculate past active barriers, busy locks, unset flags
— Buffers speculative data (caches)
— Detect dependence violations
— Roll back offending threads
— Keep safe thread(s)
e Lock: owner
* Flag: producer
« Barrier: lagging threads

= Mechanism: offload sync op

from CPU .

[
o
73]
D
n
EEEEEEEEEEN
)
=
=
>
@
N
'
(1]
2 <———————————————
)
=
<
@
>
o
>
=

Important Features of our Proposal

= Unified HW support for spec barriers, locks, flags

= Concurrency possible even if conflicts
— Forward progress guaranteed by safe thread
— All in-order safe-to-spec conflicts tolerated

= Simple HW
— No order among spec threads — simpler than full TLS

= No programming effort
— Retargeted macros / directives

= Compatible with conventional sync at run time

] CORNELL
1867

I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Barrier

H H E BARRIER

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Barrier

BARRIER

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Barrier

| e BARRIER

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Barrier

BARRIER

|
000

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Lock

u a a a E ACQUIRE

RELEASE

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Lock

0000 ..
v

RELEASE

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Lock

RELEASE

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Lock

a ACQUIRE

RELEASE

B Safe

B Speculative
I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Example: Speculative Lock

a ACQUIRE

|
v

RELEASE

B Safe

B Speculative
I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Speculative Synchronization Unit (SSU)

= Extends cache controller
= Simple hardware CPU

— 1 extra “cache line”

— 1 Spec bit / cache line Logic
— Some control logic i L1

= Modest HW overhead S
— About 2KB for
« L1=16KB
« L2=1MB

L2
|

] CORNELL
1867

I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Speculative Lock Request

= CPU side: A 3
— Supply lock address to SSU ®
— Checkpoint register file in HW

= SSU side:
— Initiate T&T&S loop on lock variable

= CPU proceeds into sync’d code

= Use caches as speculative buffer
— Set Spec bit in lines accessed speculatively

\I :
j CORNELL I-acoma
1867 (c) 2002 José F. Martinez - Speculative Synchronization ~~~_ group

Lock Acquire and Thread Commit

= SSU acquires lock (T&S successful) A
— Gang-clears all Spec bits R — ®
— one-shot thread commit ¢
— Becomes idle

= Release issued later by processor

I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Release while Speculative (RWS)

= CPU issues release, but SSU still active A
— SSU intercepts release by processor . d l
— Mark in SSU: “release issued” ‘
= When lock becomes available, SSU: A
— Does not perform T&S <=
— Gang-clears all Spec bhits o0

— one-shot thread commit
= Thread commits without acquiring lock

] CORNELL
1867

I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Mem Access Conflict and Thread Squash

. Leverage coherence MEeSSages
— Request to safe line: service normally
— Request to spec line: squash thread

 Gang-invalidate lines marked Spec+Dirty
— one-shot squash

 Gang-clear all Spec bits
* Roll back & restart at sync point

= Safe threads never squashed — forward progress
= All in-order safe-to-spec dependences tolerated

] CORNELL
1867

I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Speculative Buffer Overflow (Cache)

= \When cache about to overflow
— Safe thread: continue as usual
— Spec thread: stall & wait

= Stalled spec thread does not affect other threads

= Spec thread eventually becomes safe
— Then continue as usual

I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Speculative Flags and Barriers

= Flag: Leverage spec lock support o t
— Supply address, “pass” value to SSU
— Mark in SSU: “release issued” (as in RWS) ()
e Only Test—no T&S d

— Commit when “pass” read

= Barrier: Leverage spec flag support d .
— Producer = last thread to arrive ‘
— If not last one, spin on flag speculatively
— Last thread toggles flag ¥
X

\I :
j CORNELL I-acoma
1867 (c) 2002 José F. Martinez - Speculative Synchronization ~~~_ group

Example: Retargeted M4 Macros

= No programming effort
nle at runtime with conventional sync

= Compat

‘ Conventional Macros (Existing)

Speculative Macros (Proposed)

S8 SYNC ('{
while(!ssu idle());}’)

LOCK ({
lock($1) ;1)

[f-E Natal XA

if(1ssu lock (&$1))

LOCR e L)]]

UNLOCK ($1.1lock)

} else {
UNLOCK ($1 . 1lock)
ATT($1.f,51.1f[PID])

)

UNLOCK (* { SS UNLOCK (" {
unlock ($1);}") UNLOCK ($1) } ')
WAIT (' { S (it
while ($1 !'= $2);}") if (!ssu wait(&$1,$2))
{72 S =Y Ry
BARRIER (' { SS BARRIER (' {
$1.1f[PID] = !$1.1f[PID]; :::;ii::jD] = 181.1f[PID];
LOCK (31 .1lock) SS SYNC
S1l.c++; ! Tock)
if ($1.c == NUMPROC) { Sl.c++;
$1.f = $1.1f [PID]; if ($1.c == NUMPROC) {

S1.f = $1.1£[PID];
UNLOCK ($1.1lock)

} else {
IINTL,OCK (S1 1ock)

lSS_WAIT($1.f,$1.1f[PID])

7

(c) 2002 José F. Martinez - Speculative Synchronization

I-acoma

~e group

TLR Vs Speculative Synchronization

= Execute critical sections speculatively
= |everage coherence protocol
= Guaranteed forward progress even if conflicts
= No programming effort

TLR Speculative Synchronization
= Philosophy: Lock-free sync = Philosophy: Thread-level spec
= Focuses on spec locks = Spec barriers, locks, flags
= Lock-free guarantees = Not lock-free* (but RWS)

— Simpler HW

] CORNELL . . .
. *Adaptlve eXtenSIOn_See paper (c) 2002 José F. Martinez - Speculative Synchronization Ic*vxeemg

Experimental Setup

= Node:
— 1GHz 4-issue dynamic superscalar processor
— 16KB 2-way L1, 256(64)KB 8-way L2
- SSU
= 16(64)-node CC-NUMA
— MESI coherence protocol

= Uncontended RT
- 2ns L1, 12ns L2
— 95ns local, 175ns neighbor

| :
j CORNELL I-acoma
1867 (c) 2002 José F. Martinez - Speculative Synchronization ~~~_ group

Applications

= Mix of parallel codes
— Compiler-parallelized (Polaris): APPLU* (SPECfp95)
— Annotated: Bisort*, MST (Olden)
— Hand-tuned: Ocean, Barnes (SPLASH-2)

] CORNELL . =
1867 . *Barrler-only COde (c) 2002 José F. Martinez - Speculative Synchronization Ic*vxgemg

Summary of Results

= Average sync time reduction ~ 35%
— Promising for such simple hardware

= Execution time reduction up to ~ 15%, avg. ~ 7.5%

= Room for improvement

‘l *
j SO I-acoma
1867 (c) 2002 José F. Martinez - Speculative Synchronization ~~~_ group

Execution Time Reduction

Barnes Barnes
APPLU Bisort MST Ocean Fine Coarse Average
[110] =3
100954 1007057 | 100 Overhead

o0
=
|

100 - g l952I """""""" N | 92.6 | [Squashed
84.9 I I l II B sy
3 . : N T e B IR | [Uscful (Speculative
D Useful (Safe)

I
=
|

Execution Time (%)
o
<o
|

b2
o
|

Base
Spec
Base
Spec
Base
Spec
Base
Spec
Base
Spec
Base
Spec
Base
Spec

I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Sync Time Reduction

Barnes Barnes

APPLU Bisort MST Ocean Fine Coarse Average
ool 64% 122% 462% 148% 15, . 19.4% Overhead
: |] squash (2nd Lock)
Squash (False Data)

~ R0 - . R
5 I:l Squash (True Data)
o
f;)i 60 — Lock Sync

0 — -
f I . Barrier Sync
8
-
401l
£
e

20

ﬂ —

Base
Spec
Base
Spec
Base
Spec
Base
Spec
Base
Spec
Base
Spec
Base
Spec

Large sync reduction ~ 35%
Room for improvement

I-acoma

~e group

(c) 2002 José F. Martinez - Speculative Synchronization

Summary

= Speculative Synchronization very effective
— Promising speedups
= Thread-level spec works for parallel programs, too

— Safe thread — critical path largely unaffected
— Spec cache overflow simply stalls

= Simple hardware
= No programming effort

= Room for improvement
— Residual sync, false sharing, ...

] CORNELL
1867

I-acoma

(c) 2002 José F. Martinez - Speculative Synchronization ~— QFOUp

Speculative Synchronization: Applying
Thread-Level Speculation to Parallel
Applications

José F. Martinez™ and Josep Torrellas

University of Illinois
ASPLOS 2002

] * Now at Cornell University
(CORNELL .
1867 I-acoma

e group

