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I. MOTIVATION

In the early 2000s, the computer architecture community
was debating solutions to the diminishing performance returns
of monolithic superscalar processors. The need to continue
delivering higher performance, better energy efficiency, and
new capabilities started a number of efforts on exploiting par-
allelism in future architectures. Chip Multiprocessors (CMPs)
were the putative next-generation architecture, but they raised
serious concerns along multiple fronts—in particular, perfor-
mance and programmability. Single-thread performance was
paramount for the workloads at the time; if cores were to grow
relatively weaker as compared to their monolithic alternative,
how would single-thread performance continue to improve?
Parallel programming and its associated challenges of data
races, non-determinism, and synchronization overhead was
another concern; would all programmers need to be parallel
programmers?

These concerns motivated significant interest in techniques
such as Thread-Level Speculation (TLS), Transactional Mem-
ory (TM), and Checkpointed Multiprocessors. Moreover, many
of the ideas that had traditionally been studied in the context of
large-scale shared-memory multiprocessors, such as scalable
synchronization and distributed cache coherence, could now be
applied to a single-chip architecture—offering the tantalizing
ability to integrate substantial functionality into lower-cost
platforms.

As work to integrate TLS and TM into a CMP cache hierar-
chy developed, several authors, including ourselves, published
TM and TLS designs. A common thread across these designs
was the need to efficiently manage conflicts between addresses
accessed by different threads. For example, the Transactional
Memory Coherence and Consistency (TCC) project at Stan-
ford [4] required a committing thread to broadcast the list of
addresses it had written, so that all other threads would detect
conflicts with their own accesses.

In this timeframe, the DARPA HPCS program emerged to
help create the next generation of high productivity computer
systems—raising the bar not only on performance, but also on
programmability. In this program, Josep Torrellas collaborated
with IBM as part of the IBM-led PERCS project. Dr. Balaram
Sinharoy, one of the leading designers of IBM’s POWER
processors, was interested in what TLS could offer if added to

POWER processors. He had discussions with Josep Torrellas
and visited the University of Illinois.

The genesis of the idea behind our ISCA 2006 paper
came as part of evaluating TLS when Luis Ceze interned
with Călin Caşcaval at IBM Research during the summer
of 2005. The challenges of incorporating TLS into a real
processor became apparent: changes to the cache hierarchy
were difficult and needed to be avoided, which meant that
versioning information, speculative read bits, and speculative
write bits commonly used to track dependence information
across threads could not be held in the caches. They needed
to be stored somewhere else. From that design constraint, the
idea of Signatures emerged.

With the involvement of James Tuck and Josep Torrellas,
the idea was broadened and refined to also make it applicable
to TM, as TM required similar hardware primitives as TLS.

II. DESIGN

The key idea of the paper is to hash-encode the set of
addresses accessed by a thread in a concise signature, and
add hardware support for operations that efficiently process
signatures. The signatures are a superset encoding that can
efficiently track many addresses in a single register using
hundreds of bits or more. What made the signatures espe-
cially useful was what we called Bulk operations: operations
that allowed many addresses to be compared or operated
on simultaneously. Being a set, signatures are operated on
efficiently using bitwise operations—e.g., bitwise-and for in-
tersection and bitwise-or for union. These simple yet powerful
operations made it possible to build even more sophisticated
functionalities on signatures. For example, using combinations
of signatures and Bulk operations together, we implemented
mechanisms for disambiguating the addresses accessed by
different threads, invalidating stale state in caches, making
the state of committing threads visible to all other threads,
discarding incorrect state when threads are squashed, and
managing the speculative state of multiple cooperating threads.

Traditionally, mechanisms to implement such features are
complex, often distributed, and error prone. In contrast, Bulk
operations provide substantial conceptual and implementation
simplicity. For example, we simplified the implementation of
thread commit in TCC by broadcasting the signatures of the
committing threads to both detect conflicts with other threads



and selectively invalidate the cached state of other threads. We
envisioned a Bulk Disambiguation Module that included the
signature registers and various functional units to operate on
them. This unit worked together with, but independently of
the L1 cache.

III. EVOLUTION

Our paper garnered attention from industry and academia
shortly after publication. On the industry side, there was
a flurry of TM designs by several processor vendors. For
example, one of the architectures that considered speculation
was the IBM Blue Gene/Q (BGQ). In the BGQ design, both
TLS and TM were considered [7] and, to our recollection,
early discussions included the use of signatures. During that
time, IBM filed several patents that included signatures for
cache coherence and speculation support [3], [1]. Patents from
Sun/Oracle employees who were involved in the pioneering
Sun Rock processor cited our paper [5]. Josep Torrellas
presented the work at Intel and it was received with significant
interest.

In academia, our paper motivated or influenced a long
series of Bloom-filter-based disambiguation work by the com-
munity covering TM, cache design, and memory models.
Following the publication of our paper, we conceived the
BulkSC [2] checkpointed multiprocessor, which was published
in the following year at ISCA. In BulkSC, cores continuously
execute atomic blocks of instructions called Chunks, main-
tain cache coherence with signature operations, and provide
high-performance sequential consistency. BulkSC formed the
foundation for many follow-up works that provide scalable
checkpointed multiprocessing and deterministic parallel pro-
cessing, both by the authors and by others.

One important influence of our work was on tackling the
overheads in TM. For example, the LogTM-SE [8] proposal
from the University of Wisconsin employed signatures to
enhance their TM design. Many other TM designs adopted
signatures. Yet other works considered ways of using signa-
tures to reduce aborts, better capture locality, or tailor them to
specific workloads and applications.

The influence of signature-based operations on parallel
systems extended broadly to aspects such as data race detec-
tion, cache design, coherence support, and memory models.
Furthermore, some works exposed signatures to programmers
to perform profiling, compiler-directed runtime disambigua-
tion, and program optimizations [6]. More recently, work
integrating durable transactions for non-volatile memory and
TM has built on BulkSC ideas.

IV. THE FUTURE

When we wrote the paper, we had every expectation
that TM and coarse-grain speculation would become popular
techniques in commercial computer systems. Indeed, in the
years that followed, interest in these techniques was very
high, and companies such as IBM, Intel, and Sun developed
hardware support for TM. In particular, the Intel hardware TM
architecture (TSX) received a lot of attention. As years went

by, however, these designs failed to gain traction and interest
waned. Recently, Intel has discontinued support for TSX.

While one can speculate on the various reasons for such
an outcome, a major reason has to be the imbalance between
the relatively high hardware complexity of TM implementa-
tions and the small set of existing applications that can use
TM to substantially improve performance or programmability.
Indeed, TM hardware intimately interacts with complicated
mechanisms in multiprocessor memory systems such as cache
coherence, which increases the chance of introducing hardware
bugs. In addition, recent disclosures of security vulnerabilities
enabled by speculation hardware have prompted additional
concerns.

Another reason may be the emergence of broad classes of
applications that expose regular, data-level parallelism, and
of compute engines that can exploit it. A good example
is machine learning applications and GPUs. GPUs provide
performance scaling for these applications without requiring
speculative techniques.

Nonetheless, TM, TLS, and Checkpointed Multiprocessors
remain important computing techniques that can boost appli-
cation speed or programmability. Their time may still come.

In the meantime, signatures and simple Bulk operations on
them are being employed in a variety of uses in processor,
memory, and storage systems hardware. They are useful in
various search, comparison, and matching mechanisms, such
as those found in data coherence and virtual memory sup-
port. As future computer architecture structures become more
complicated, the conceptual and implementation simplicity of
signatures and Bulk operations will be increasingly valued.
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